

LABORATORY TEST REPORT DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377 : Part 4 : 1990

Project: **Cork Line Level Crossings** Job No: 19-135 Client: **OCB** Geotechnical Lab Ref No: ST 93384 **Date Received:** Unit 1 Carrigogna 09/03/2020 Midleton **Date Tested:** 13/04/2020 Co Cork **Date Reported:** 21/04/2020

Order No: 2003-104 Sample Ref: XC215-TP03 Type B Sample 5

Originator: Ian Holley Location: 0.5-1.0m

Type of Reaction Load			
Load Frame			
Technician(s	s)		
NW			
Mass of Surcharge	Weights		
8.8Kg			
Overburden Pre	ssure		
3.9kPa			
Material Typ	e		
Soil			
Density (Mg/r	m³)		
2.14			
Propertion of material re	emoved from		
initial sample by dry	mass (%)		
9.1			
(E) 1 0 1 2 3 4 Days Soak	5 6 7		
Final Swell (mm):	N/A		

Penetration (mm)	Force (kN)	Standard Force (kN)	Top CBR (%)	
2.5	0.06	13.2	0.5	
5.0	0.13	20.0	0.6	
Moisture content: %	20.4	Mean CBR value : % 0.		
Penetration (mm)	Force (kN)	Standard Force (kN)	Bottom CBR (%)	
2.5	0.05	13.2	0.4	
2.5 5.0	0.05 0.11	13.2 20.0	0.4 0.5	

Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93381
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC215-TP03 Type B

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 0.25-0.50m Sampling Reason: Request

Parameter	RESULT
рН	7
Sulphate Aqueous Extract (SO4) (mg/l)	16
Sulphur as S, Total (%)	0.02
Sulphate as SO4, Total (%)	0.04

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature
JAMES FISHER TESTING SERVICES (IRELAND) LTD.

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93379 09/03/2020 Unit 1 Carrigogna **Date Received:** Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP03 Type D

Sample Type: Bulk Location: XC215-TP03 Type D

Date Sampled: Client Info Sample by: Client

Depth: 0.25-0.5m **Material Type:** Soil

Moisture Content (%): 35

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

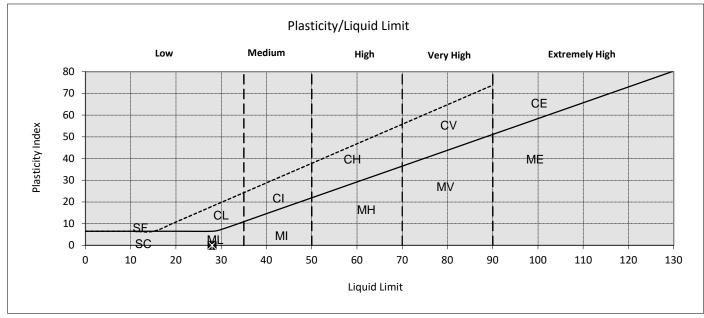
The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: 19-135 Cork Line Level Crossings Job No.: **Client: OCB Geotechnical** Lab Ref No.: ST 93380

Unit 1 Carrigogna Sample Ref.: XC215-TP03 0.25-0.5m Type B

Midleton **Date Sampled:** Client Info Co Cork **Date Received:** 09/03/2020 2003-104 **Date Tested:** 28/03/2020 Ian Holley **Date Reported:** 21/04/2020

Sampling Certificate No Sampled By Client Sample Type **Bulk** Sample Preparation Method Washed MATERIAL Soil Retained 425 micron (%) 23 Natural Moisture Content (%) 28 Liquid Limit (single point)(%) 28 Plastic Limit (%) Non-Plastic Plasticity Index N/A

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93388 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 02/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP04 Type D Sample 3

Sample Type: Bulk Location: XC215-TP04 Type D Sample 3

Date Sampled: Client Info Sample by: Client

Depth: 0.3-0.7m **Material Type:** Soil

Moisture Content (%): 22

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

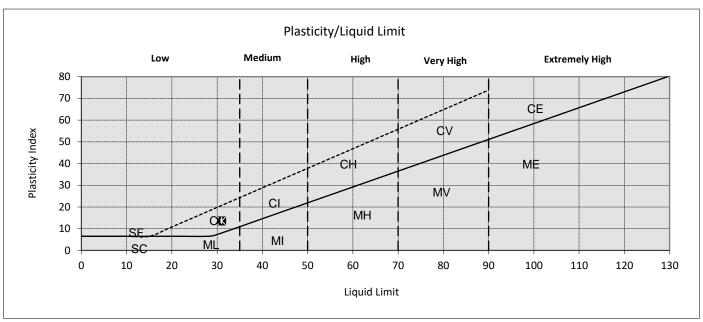
Order No:

Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93389

Unit 1 Carrigogna Sample Ref.: XC215-TP04 0.3-0.7m Type D Sample 3


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 09/03/2020

 2003-104
 Date Tested:
 26/03/2020

 Ian Holley
 Date Reported:
 31/03/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	20	
Natural Moisture Content (%)	21	
Liquid Limit (single point)(%)	31	
Plastic Limit (%)	17	
Plasticity Index	14	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB Geotechnical
Unit 1 CarrigognaLab Ref No.:ST 93387Unit 1 CarrigognaDate Received:09/03/2020MidletonDate Reported:02/04/2020

Date Tested: 31/03/2020

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionLight Clay

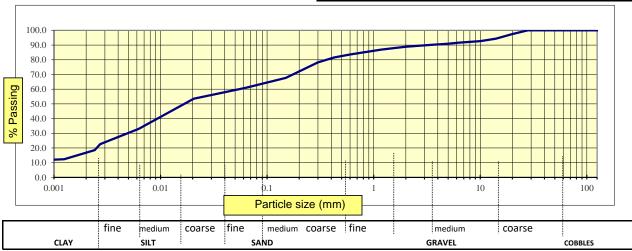
Client Ref. XC215-TP04 Type B Sample 2

Location: XC215-TP04 Type B Sample 2

Supplier: Bulk

Source: Client Info.

Depth (m): 0.3-0.7m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	100	
28 mm	100	
20 mm	97	
14 mm	94	
10 mm	93	
6.3 mm	92	
5 mm	91	
3.35 mm	90	
2 mm	89	
1.18 mm	87	
0.6 mm	84	
0.425 mm	82	
0.3 mm	78	
0.15 mm	68	
0.063 mm	61	
0.020 mm	54	
0.006 mm	33	
0.003 mm	23	
0.002 mm	19	
0.001 mm	12	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93391 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP04 Type D Sample 6

Sample Type: Bulk Location: XC215-TP04 Type D Sample 6

Date Sampled: Client Info Sample by: Client

Depth: 0.7-1.0m **Material Type:** Soil

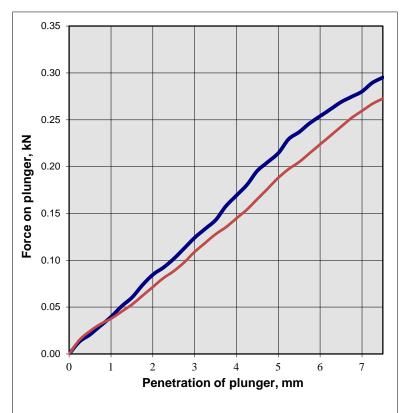
Moisture Content (%): 15

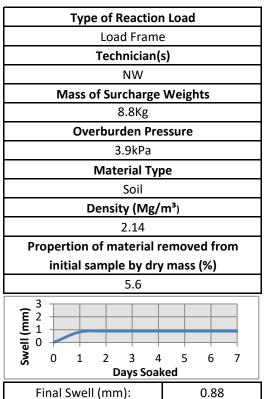
Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager




LABORATORY TEST REPORT **DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377: Part 4: 1990**

Project: **Cork Line Level Crossings** Job No: 19-135 Client: **OCB** Geotechnical Lab Ref No: ST 93390 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton Date Tested: 14/04/2020 Co Cork **Date Reported:** 22/04/2020

Order No: 2003-104 Sample Ref: XC215-TP04 Type B Sample 5

Originator: Ian Holley Location: 0.7-1.0m

Penetration (mm)	Force (kN)	Standard Force (kN)	Top CBR (%)	
2.5	0.10	13.2	0.8	
5.0	0.21	20.0	1.1	
Moisture content	: % 25.6	Mean CBR value: % 0.		
Penetration (mm)	Force (kN)	Standard Force (kN)	Bottom CBR (%)	
2.5	0.09	13.2	0.7	
2.5	0.03		- · · · · · · · · · · · · · · · · · · ·	
5.0	0.19	20.0	0.9	

Moisture content determined in accordance with BS 1377: Part 2: 1990 - oven drying method CBR determined in accordance with BS 1377: Part 4: 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

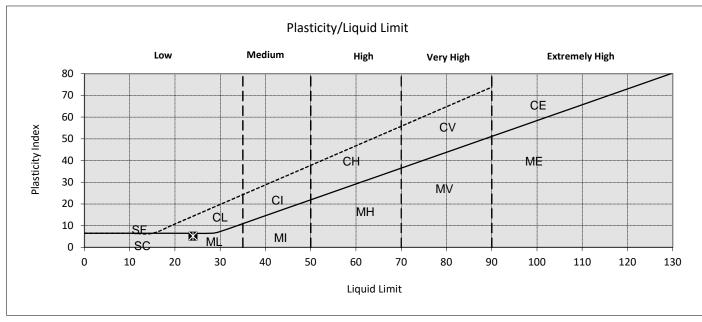
Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref No.:	ST 93392
	Unit 1 Carrigogna	Sample Ref.:	XC215-TP04 0.7-1.0m Type D S.6

Client Info Midleton **Date Sampled:** Co Cork **Date Received:** 09/03/2020

02/04/2020 2003-104 Order No: **Date Tested: Originator:** Ian Holley **Date Reported:** 21/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	27	
Natural Moisture Content (%)	18	
Liquid Limit (single point)(%)	24	
Plastic Limit (%)	19	
Plasticity Index	5	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93393

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 31/03/2020

 2003-104
 Material:
 Soil

Originator: Ian Holley Visual Description Cobbly, Dark Sandy Clay

Client Ref. XC215-TP04 Type B Sample 6

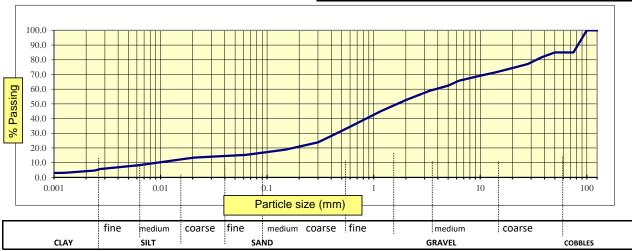
Location: XC215-TP04 Type B Sample 6

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 1.0-1.5m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	85	
63 mm	85	
50 mm	85	
37.5 mm	82	
28 mm	77	
20 mm	74	
14 mm	71	
10 mm	69	
6.3 mm	66	
5 mm	62	
3.35 mm	59	
2 mm	53	
1.18 mm	45	
0.6 mm	34	
0.425 mm	29	
0.3 mm	24	
0.15 mm	19	
0.063 mm	15	
0.020 mm	13	
0.006 mm	8	
0.003 mm	6	
0.002 mm	5	
0.001 mm	3	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93395 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP05 Type D Sample 4

Sample Type: Bulk Location: XC215-TP05 Type D Sample 4

Date Sampled: Client Info Sample by: Client

Depth: 0.5-1.0m **Material Type:** Soil

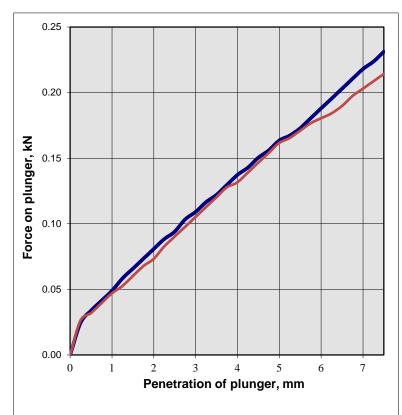
Moisture Content (%): 18

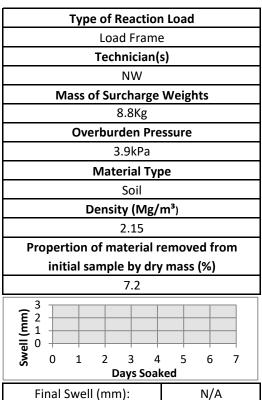
Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager


LABORATORY TEST REPORT


DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377: Part 4: 1990

Project: **Cork Line Level Crossings** Job No: 19-135 Client: **OCB** Geotechnical Lab Ref No: ST 93394 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton Date Tested: 14/04/2020 Co Cork **Date Reported:** 21/04/2020

Order No: 2003-104 Sample Ref: XC215-TP05 Type B Sample 3

Originator: Ian Holley Location: 0.5-1.0m

Penetration (mm)	Force (kN)	Standard Force (kN)	Top CBR (%)	
2.5	0.09	13.2	0.7	
5.0	0.16	20.0	0.8	
Moisture content: %	21.3	Mean CBR value: % 0.8		
Penetration (mm)	Force (kN)	Standard Force (kN)	Bottom CBR (%)	
2.5	0.09	13.2	0.7	
2.3	0.03	13.2	0.7	
5.0	0.16	20.0	0.8	

Moisture content determined in accordance with BS 1377: Part 2: 1990 - oven drying method CBR determined in accordance with BS 1377: Part 4: 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

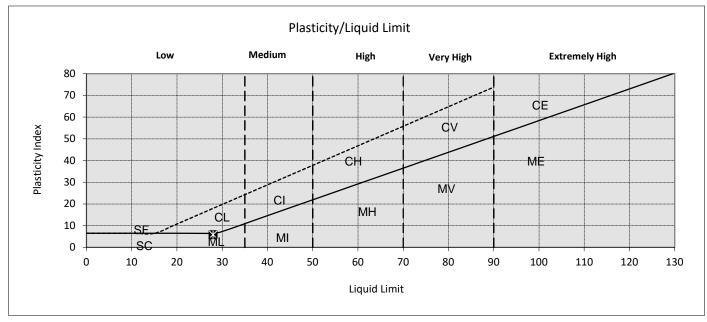
James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

N/A

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref No.:	ST 93396
	11 11 4 6 1		V6045 TD0

Unit 1 Carrigogna Sample Ref.: XC215-TP05 0.5-1.0m Type D S.4

Midleton **Date Sampled:** Client Info 09/03/2020 Co Cork **Date Received:** 2003-104 06/04/2020 **Date Tested:** Ian Holley **Date Reported:** 22/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	25	
Natural Moisture Content (%)	20	
Liquid Limit (single point)(%)	28	
Plastic Limit (%)	22	
Plasticity Index	6	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93398 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 02/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP05 Type D Sample 7

Sample Type: Bulk Location: XC215-TP05 Type D Sample 7

Date Sampled: Client Info Sample by: Client

Depth: 1.1-1.6m **Material Type:** Soil

Moisture Content (%): 16

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

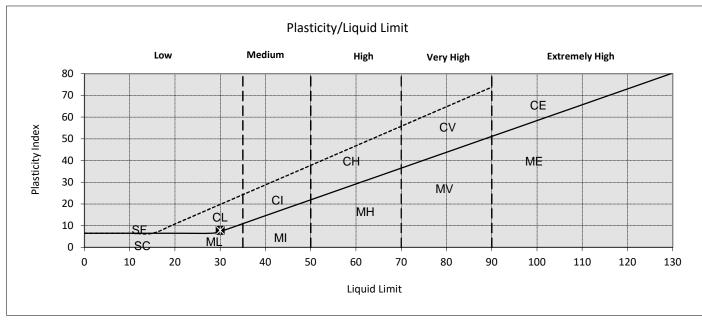
The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Ian Holley

Originator:


22/04/2020

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref No.:	ST 93399
	Unit 1 Carrigogna	Sample Ref.:	XC215-TP05 1.1-1.6m Type D S.7
	Midleton	Date Sampled:	Client Info
	Co Cork	Date Received:	09/03/2020
Order No:	2003-104	Date Tested:	06/04/2020

Date Reported:

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	27	
Natural Moisture Content (%)	18	
Liquid Limit (single point)(%)	30	
Plastic Limit (%)	22	
Plasticity Index	8	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93397

 OCB Geotechnical
 Lab Ref No.:
 ST 93397

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 31/03/2020

 2003-104
 Material:
 Soil

Originator: Ian Holley Visual Description Grey/Brown Clay, Fine Sand

Client Ref. XC215-TP05 Type B Sample 6

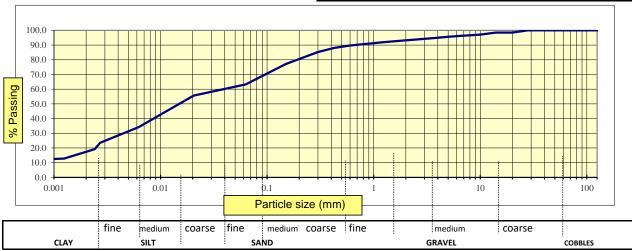
Location: XC215-TP05 Type B Sample 6

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 1.1-1.6m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	100	
28 mm	100	
20 mm	98	
14 mm	98	
10 mm	97	
6.3 mm	96	
5 mm	96	
3.35 mm	94	
2 mm	93	
1.18 mm	92	
0.6 mm	90	
0.425 mm	88	
0.3 mm	85	
0.15 mm	77	
0.063 mm	63	
0.020 mm	56	
0.006 mm	34	
0.003 mm	24	
0.002 mm	19	
0.001 mm	13	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

 Project:
 Cork Line Level Crossings
 Job No:
 19-135

 Client:
 OCB Geotechnical
 Lab Ref No.:
 ST 93400

 Unit 1 Gazzina and Conference
 Data Resolved
 20/03/0320

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

 2003-104
 Material:
 Soil

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionCobbly Clay, Sandy

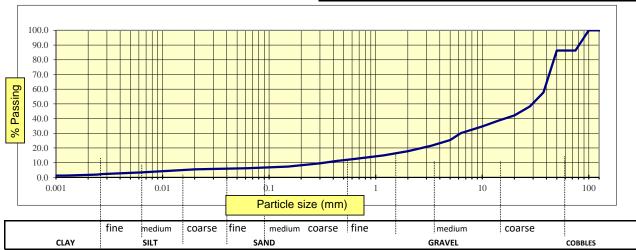
Client Ref. XC215-TP05 Type B Sample 8

Location: XC215-TP05 Type B Sample 8

Supplier: Bulk

Source: Client Info.

Depth (m): 1.7-2.2m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	86	
63 mm	86	
50 mm	86	
37.5 mm	58	
28 mm	48	
20 mm	42	
14 mm	38	
10 mm	35	
6.3 mm	30	
5 mm	25	
3.35 mm	22	
2 mm	18	
1.18 mm	15	
0.6 mm	12	
0.425 mm	11	
0.3 mm	10	
0.15 mm	7	
0.063 mm	6	
0.020 mm	5	_
0.006 mm	3	
0.003 mm	2	
0.002 mm	2	
0.001 mm	1	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

Order No:

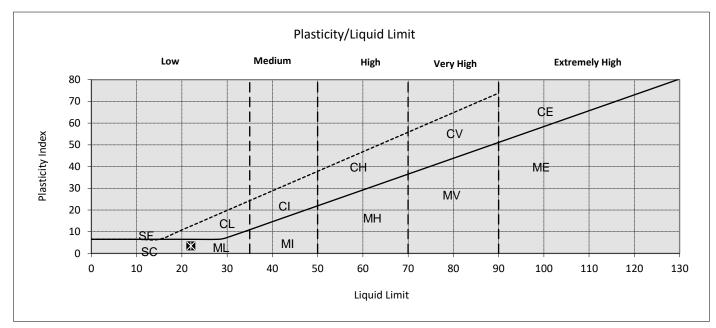
Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93402

Unit 1 Carrigogna

Sample Ref.: XC215-TP06 0.5-1.0m Type B Sample 3


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 09/03/2020

 2003-104
 Date Tested:
 26/03/2020

 Ian Holley
 Date Reported:
 31/03/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	21	
Natural Moisture Content (%)	18	
Liquid Limit (single point)(%)	22	
Plastic Limit (%)	19	
Plasticity Index	3	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

0-2-8

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377: Part 2: 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377: Part 2: 1990 Cl. 9.5 Moisture content to BS 1377: Part 2: 1990 Oven Drying Method Cl 3.2

Project: Cork Line Level Crossings Job No: 19-135 Client: **OCB** Geotechnical Lab Ref No.: ST 93403 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton 02/04/2020 **Date Reported:** Co Cork **Date Tested:** 01/04/2020

2003-104 Soil Order No: Material:

Grey/Brown Clay, Sandy Originator: Ian Holley **Visual Description**

Client Ref. XC215-TP06 Type B Sample 3

Location: XC215-TP06 Type B Sample 3

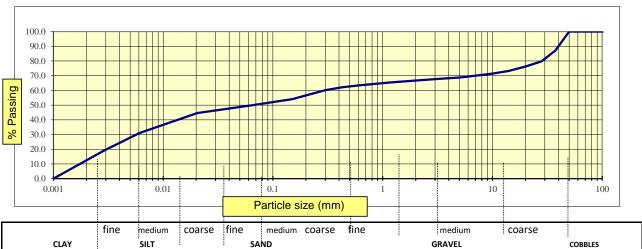
Supplier: Client Info.

Client Info. Source:

Depth (m): 0.5-1.0m

Client Request **Sampling Reason:**

Sampled By: Client


Specification:

Client Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

Moisture Content%: 16

BS Sieve	%	Specification
Size	Passing	·
125 mm	100	
100 mm	100	
90 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	87	
28 mm	80	
20 mm	76	
14 mm	73	
10 mm	71	
6.3 mm	70	
5 mm	69	
3.35 mm	68	
2 mm	67	
1.18 mm	65	
0.6 mm	63	
0.425 mm	62	
0.3 mm	60	
0.15 mm	54	
0.063 mm	50	
0.0205 mm	45	
0.0060 mm	31	
0.0029 mm	19	

Tested in accordance with BS 1377: Part 2: 1990 Clause 3.2, 9.2 and 9.5

Sedimentation by Hydrometer - Not UKAS

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93407
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC215-TP06 Type B Sample 6

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 1.5-2.0m Sampling Reason: Request

Parameter	RESULT
рН	8
Sulphate Aqueous Extract (SO4) (mg/l)	<10
Sulphur as S, Total (%)	<0.01
Sulphate as SO4, Total (%)	0.01

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

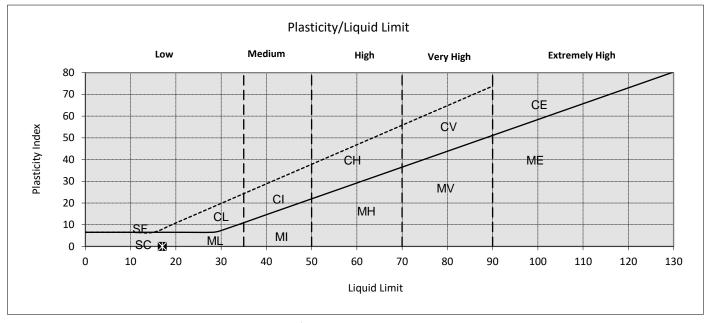
Order No:

Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93405

Unit 1 Carrigogna Sample Ref.: XC215-TP06 1.5-2.0m Type B Sample 6


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 09/03/2020

 2003-104
 Date Tested:
 27/03/2020

 Ian Holley
 Date Reported:
 02/04/2020

Sampling Certificate No Sampled By Client Sample Type **Bulk** Sample Preparation Method Washed **MATERIAL** Soil Retained 425 micron (%) 50 7 Natural Moisture Content (%) Liquid Limit (single point)(%) **17** Plastic Limit (%) **Non-Plastic** Plasticity Index N/A

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

0-2-8

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377: Part 2: 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377: Part 2: 1990 Cl. 9.5 Moisture content to BS 1377: Part 2: 1990 Oven Drying Method Cl 3.2

Project: Cork Line Level Crossings Job No: 19-135 Client: **OCB** Geotechnical Lab Ref No.: ST 93406 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton 02/04/2020 **Date Reported:** Co Cork **Date Tested:** 31/03/2020

2003-104 Soil Order No: Material:

Cobbly Dark Clay, Sandy Originator: Ian Holley **Visual Description**

Client Ref. XC215-TP06 Type B Sample 6

Location: XC215-TP06 Type B Sample 6

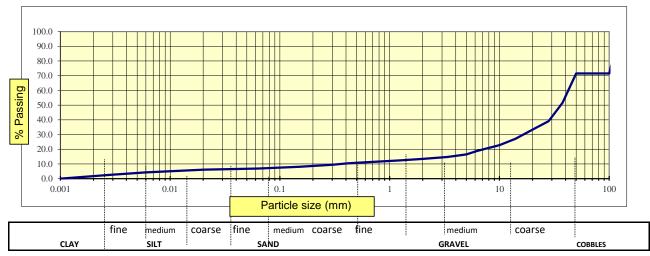
Supplier: Client Info.

Client Info. Source:

Depth (m): 1.5-2.0m

Client Request Sampling Reason:

Sampled By: Client


Client Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

Moisture Content%:

Specification:

BS Sieve	%	Specification
Size	Passing	
125 mm	100	
100 mm	72	
90 mm	72	
75 mm	72	
63 mm	72	
50 mm	72	
37.5 mm	51	
28 mm	39	
20 mm	33	
14 mm	27	
10 mm	23	
6.3 mm	19	
5 mm	16	
3.35 mm	15	
2 mm	13	
1.18 mm	12	
0.6 mm	11	
0.425 mm	10	
0.3 mm	9	
0.15 mm	8	
0.063 mm	7	_
0.0205 mm	6	
0.0060 mm	4	
0.0029 mm	3	

Tested in accordance with BS 1377: Part 2: 1990 Clause 3.2, 9.2 and 9.5

Sedimentation by Hydrometer - Not UKAS

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

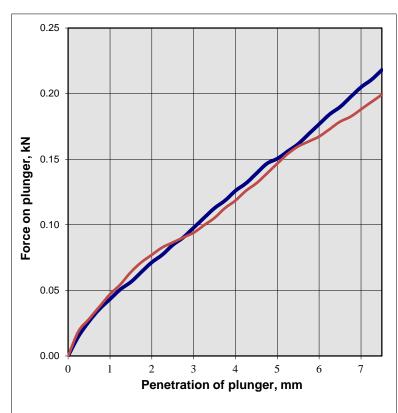
JAMES FISHER TESTING SERVICES (IRELAND) LTD.

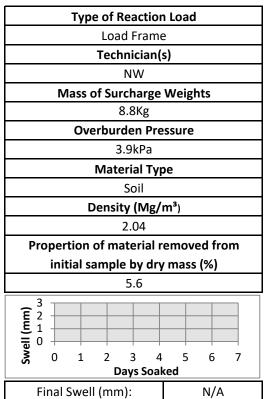
☐ James Ward, Operations Manager

Order No: 2003-104

XC215-TP07 Type B Sample 2

LABORATORY TEST REPORT


DETERMINATION OF CALIFORNIA BEARING RATIO - BS 1377: Part 4: 1990


Sample Ref:

Project :Cork Line Level CrossingsJob No:19-135Client :OCB GeotechnicalLab Ref No:ST 93408Unit 1 CarrigognaDate Received:09/03/2020MidletonDate Tested:13/04/2020

Co Cork Date Reported: 22/04/2020

Originator : Ian Holley Location: 0.4-0.8m

Penetration (mm)	Force (kN)	Standard Force (kN)	Top CBR (%)
2.5	0.08	13.2	0.6
5.0	0.15	20.0	0.8
Moisture content: %	24.3	Mean CBR value: % 0.7	
Penetration (mm)	Force (kN)	Standard Force (kN)	Bottom CBR (%)
Penetration (mm) 2.5	Force (kN) 0.09	Standard Force (kN) 13.2	Bottom CBR (%) 0.7
` '			

Moisture content determined in accordance with BS 1377 : Part 2 : 1990 - oven drying method CBR determined in accordance with BS 1377 : Part 4 : 1990

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

J-2-8

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

0955

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93409 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 02/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP07 Type D Sample 3

Sample Type: Bulk Location: XC215-TP07 Type D Sample 3

Date Sampled: Client Info Sample by: Client

Depth: 0.4-0.8m **Material Type:** Soil

Moisture Content (%): 28

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

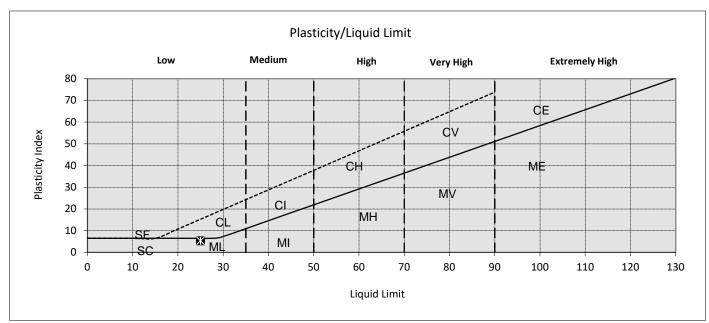
The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref No.:	ST 93410
	Unit 1 Carrigagna	Comple Def.	VC21E TD07

XC215-TP07 0.4-0.8m Type D S.3 Sample Ref.: Unit 1 Carrigogna

Midleton Client Info **Date Sampled:** 09/03/2020 Co Cork **Date Received:** 06/04/2020 2003-104 **Date Tested:** Ian Holley **Date Reported:** 22/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	23	
Natural Moisture Content (%)	17	
Liquid Limit (single point)(%)	25	
Plastic Limit (%)	20	
Plasticity Index	5	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93412 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 27/03/2020 **Order No:** 2003-104 **Date Reported:** 02/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP07 Type D Sample 6

Sample Type: Bulk Location: XC215-TP07 Type D Sample 6

Date Sampled: Client Info Sample by: Client

Depth: 0.9-1.4m **Material Type:** Soil

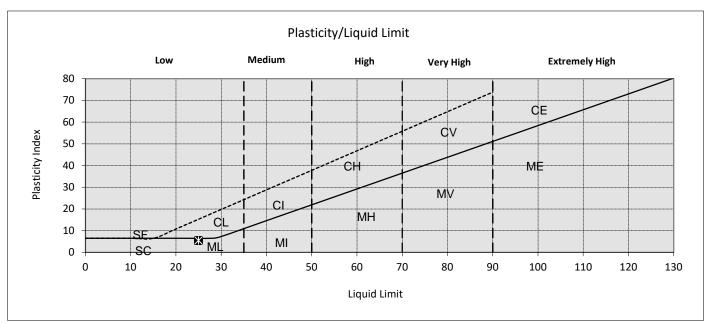
Moisture Content (%): 20

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager



LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref No.:	ST 93413
	Unit 1 Carrigogna	Sample Ref.:	XC215-TP07 0.9-1.4m Type D S.6

Midleton Co Cork Date Received: 09/03/2020
Order No: 2003-104 Date Tested: 01/04/2020
Originator: Ian Holley Date Reported: 22/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	28	
Natural Moisture Content (%)	20	
Liquid Limit (single point)(%)	25	
Plastic Limit (%)	19	
Plasticity Index	5	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93411

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionLight Clay, Fine, Sandy

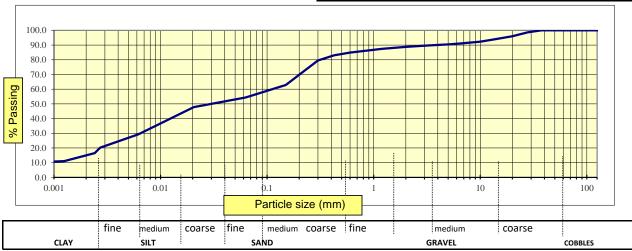
Client Ref. XC215-TP07 Type B Sample 5

Location: XC215-TP07 Type B Sample 5

Supplier: Bulk

Source: Client Info.

Depth (m): 0.9-1.4m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	100	
28 mm	99	
20 mm	96	
14 mm	94	
10 mm	92	
6.3 mm	91	
5 mm	90	
3.35 mm	90	
2 mm	89	
1.18 mm	87	
0.6 mm	85	
0.425 mm	83	
0.3 mm	80	
0.15 mm	63	
0.063 mm	54	
0.020 mm	48	
0.006 mm	29	
0.003 mm	20	
0.002 mm	17	
0.001 mm	11	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93415
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC215-TP07 Type D Sample 9

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 1.6-2.1m Sampling Reason: Request

Parameter	RESULT
рН	7.2
Sulphate Aqueous Extract (SO4) (mg/l)	51
Sulphur as S, Total (%)	0.01
Sulphate as SO4, Total (%)	0.02

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93414Unit 1 CarrigognaDate Received:09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

 2003-104
 Material:
 Soil

Originator: Ian Holley Visual Description Cobble, Dark Clay, Sandy

Client Ref. XC215-TP07 Type B Sample 8

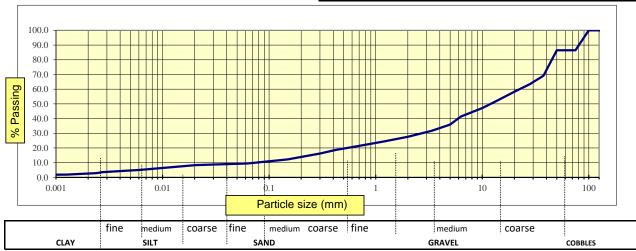
Location: XC215-TP07 Type B Sample 8

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 1.6-2.1m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	86	
63 mm	86	
50 mm	86	
37.5 mm	69	
28 mm	63	
20 mm	58	
14 mm	52	
10 mm	47	
6.3 mm	41	
5 mm	36	
3.35 mm	32	
2 mm	28	
1.18 mm	24	
0.6 mm	21	
0.425 mm	19	
0.3 mm	16	
0.15 mm	12	
0.063 mm	9	
0.020 mm	8	
0.006 mm	5	_
0.003 mm	4	
0.002 mm	3	
0.001 mm	2	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93417 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP08 Type D Sample 4

Sample Type: Bulk Location: XC215-TP08 Type D Sample 4

Date Sampled: Client Info Sample by: Client

Depth: 0.5-1.0m **Material Type:** Soil

Moisture Content (%): 18

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

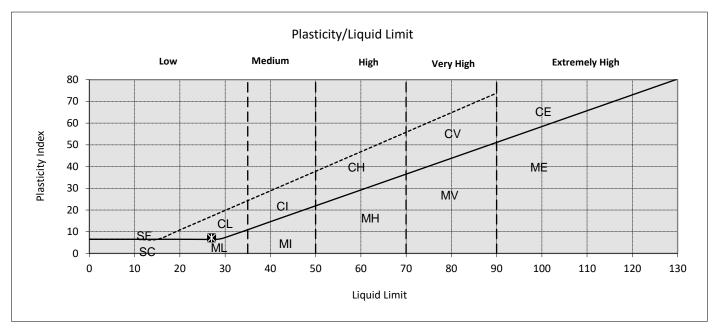
Order No:

Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93418

Unit 1 Carrigogna Sample Ref.: XC215-TP08 0.5-1.0m Type D Sample 4


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 09/03/2020

 2003-104
 Date Tested:
 26/03/2020

 Ian Holley
 Date Reported:
 31/03/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	20	
Natural Moisture Content (%)	26	
Liquid Limit (single point)(%)	27	
Plastic Limit (%)	20	
Plasticity Index	7	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377: Part 2: 1990 Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377: Part 2: 1990 Cl. 9.5

Project: Cork Line Level Crossings Job No: 19-135 Client: **OCB** Geotechnical Lab Ref No.: ST 93416

Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Reported:** 02/04/2020 **Date Tested:** 31/03/2020 2003-104 Soil Material:

Originator: Ian Holley **Visual Description** Cobble, Dark Clay, Fine Sand

Client Ref. XC215-TP08 Type B Sample 3

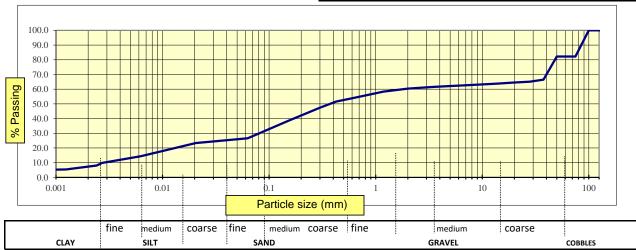
Location: XC215-TP08 Type B Sample 3

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 0.5-1.0m


Sampling Reason: Client Request

Sampled By: Client Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	82	
63 mm	82	
50 mm	82	
37.5 mm	66	
28 mm	65	
20 mm	64	
14 mm	64	
10 mm	63	
6.3 mm	62	
5 mm	62	
3.35 mm	61	
2 mm	60	
1.18 mm	58	
0.6 mm	54	
0.425 mm	52	
0.3 mm	47	
0.15 mm	38	
0.063 mm	27	
0.020 mm	23	
0.006 mm	14	
0.003 mm	10	
0.002 mm	8	
0.001 mm	5	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full. Sedimentation by Hydrometer - Not UKAS

Approved Signature JAMES FISHER TESTING SERVICES (IRELAND) LTD. ☐ James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project: Cork Line Level Crossings Job No: 19-135
Client: OCB Geotechnical Lab Ref No.: ST 93419

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

 2003-104
 Material:
 Soil

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionCobbly Clay, Sandy

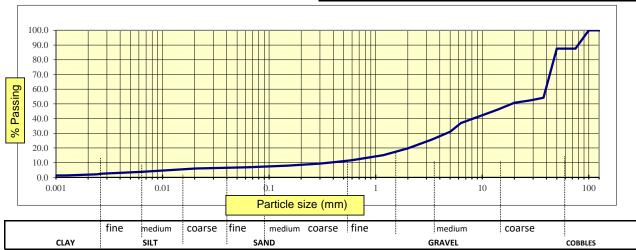
Client Ref. XC215-TP08 Type B Sample 6

Location: XC215-TP08 Type B Sample 6

Supplier: Bulk

Source: Client Info.

Depth (m): 1.4-1.8m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	88	
63 mm	88	
50 mm	88	
37.5 mm	54	
28 mm	52	
20 mm	51	
14 mm	46	
10 mm	42	
6.3 mm	37	
5 mm	31	
3.35 mm	26	
2 mm	20	
1.18 mm	15	
0.6 mm	12	
0.425 mm	10	
0.3 mm	9	
0.15 mm	8	
0.063 mm	7	
0.020 mm	6	
0.006 mm	4	
0.003 mm	3	
0.002 mm	2	
0.001 mm	1	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93425
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC215-TP09 Type D Sample 6

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 0.6-1.1m Sampling Reason: Request

Parameter	RESULT
рН	7.6
Sulphate Aqueous Extract (SO4) (mg/l)	<10
Sulphur as S, Total (%)	<0.01
Sulphate as SO4, Total (%)	0.02

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

(1-2-2

Approved Signature
JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB Geotechnical
Unit 1 CarrigognaLab Ref No.:ST 93424Date Received:09/03/2020MidletonDate Reported:02/04/2020

Date Tested: 31/03/2020
Material: Soil

Originator: Ian Holley Visual Description Cobbly Dark Clay

Client Ref. XC215-TP09 Type B Sample 5

Location: XC215-TP09 Type B Sample 5

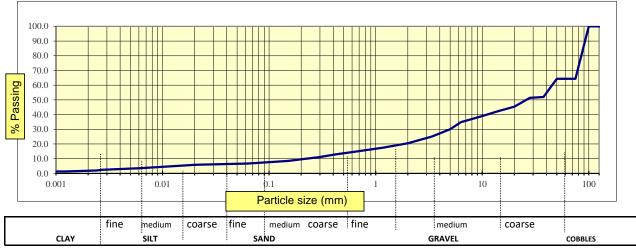
Supplier: Bulk

Source: Client Info.

2003-104

Order No:

Depth (m): 0.6-1.1m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	64	
63 mm	64	
50 mm	64	
37.5 mm	52	
28 mm	51	
20 mm	45	
14 mm	42	
10 mm	39	
6.3 mm	35	
5 mm	30	
3.35 mm	25	
2 mm	21	
1.18 mm	18	
0.6 mm	14	
0.425 mm	13	
0.3 mm	11	
0.15 mm	8	
0.063 mm	7	
0.020 mm	6	_
0.006 mm	4	
0.003 mm	2	
0.002 mm	2	
0.001 mm	1	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93421 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 27/03/2020 **Order No:** 2003-104 **Date Reported:** 02/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC215-TP09 Type D Sample 3

Sample Type: Bulk Location: XC215-TP09 Type D Sample 3

Date Sampled: Client Info Sample by: Client

Depth: 0.35-0.60m **Material Type:** Soil

Moisture Content (%): 14

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd

James Ward, Operations Manager

Page 1 of 1

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

To determine the Organic Content of Soil in accordance with BS 1377

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93423
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC215-TP09 Type D Sample 3

Supplier: Client Info Date of Sampling: Client Info

Source: Client Info Sampled By: Client

Sample Location: 0.35-0.60m Sampling Reason: Request

Result:

Organic Matter (%) 6.2	Organic Matter (%)	6.2
------------------------	--------------------	-----

Comments:

None

Tested in accordance with the above specifications Subcontracted to a laboratory UKAS accredited for this testing

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

James Ward, Operations Manager

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.: 19-135 Cork Line Level Crossings Job No.: **Client: OCB Geotechnical** Lab Ref No.: ST 93422

Unit 1 Carrigogna Sample Ref.: XC215-TP09 0.35-0.6m Type D S.3

Midleton **Date Sampled:** Client Info Co Cork **Date Received:** 09/03/2020 2003-104 **Date Tested:** 07/04/2020 Ian Holley **Date Reported:** 22/04/2020

Sampling Certificate No Sampled By Client Sample Type **Bulk** Sample Preparation Method Washed MATERIAL Soil Retained 425 micron (%) 21 Natural Moisture Content (%) 18 Liquid Limit (single point)(%) 21 Plastic Limit (%) Non-Plastic Plasticity Index N/A

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93420

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 31/03/2020

 Material:
 Soil

Originator: Ian Holley Visual Description Cobble, Dark Clay, Sandy

Client Ref. XC215-TP09 Type B Sample 2

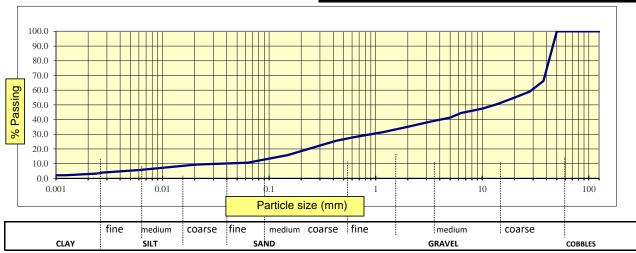
Location: XC215-TP09 Type B Sample 2

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 0.35-0.6m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	66	
28 mm	59	
20 mm	55	
14 mm	51	
10 mm	47	
6.3 mm	44	
5 mm	41	
3.35 mm	39	
2 mm	35	
1.18 mm	31	
0.6 mm	28	
0.425 mm	26	
0.3 mm	22	
0.15 mm	16	
0.063 mm	11	·
0.020 mm	9	
0.006 mm	6	·
0.003 mm	4	·
0.002 mm	3	·
0.001 mm	2	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

□ James Ward, Operations Manager

INDEX PROPERTIES - SUMMARY OF RESULTS

		Samp	le			р	p_{d}	W	< 425	W_L	W _P	lР	p ₅	
Hole No.	No.	Dept	h (m)	type	Soil Description				μm sieve					Remarks
	110.	from	to	туро		Mg	/m3	%	%	%	%		Mg/m3	
XC215-CP01	5	1.20	2.00	В	Brown sandy slightly silty GRAVEL. Gravel is granite.						NP			
XC215-CP01	9	2.00	3.00	D				4.7						
XC215-CP01	14	3.60	4.50	D	Brown mottled grey slightly sandy slightly gravelly CLAY.				56 s	24 a	15	9		
XC215-CP01	19	6.00	6.80	В	Brown sandy clayey GRAVEL.				15 s	24 a	15	9		
XC215-CPRC01	3	0.30	1.20	D	Brown slightly gravelly clayey SAND.				58 s	27 a	18	9		
XC215-CPRC01	12	3.00	4.00	D	Brown sandy slightly clayey GRAVEL.			6.6						
XC215-CPRC01	16	4.70	6.00	D	Brown slightly sandy slightly gravelly silty CLAY.				64 s	26 a	18	8		
XC215-CPRC02	3	1.20	2.00	В	Brown slightly sandy slightly silty GRAVEL. Gravel is granite.						NP			
XC215-CPRC02	6	2.00	3.00	D	Brown sandy slightly clayey GRAVEL.			5.5						
XC215-CPRC02	12	4.20	5.00	D	Brown slightly sandy slightly gravelly CLAY.				56 s	24 a	17	7		
XC215-CPRC02	16	6.00	6.20	D	Brown slightly sandy clayey GRAVEL. Gravel is granite.				37 s	27 b	17	10		
		1		l	<u>I</u>		l		I				1	

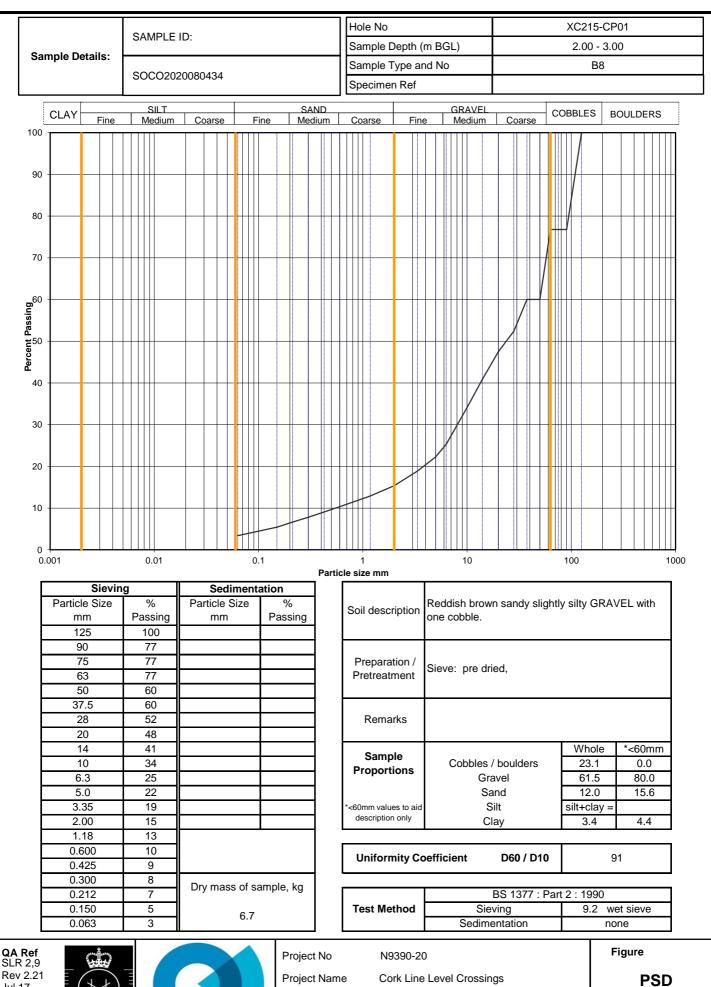
General notes: All above tests carried out to BS1377: 1990 unless annotated otherwise. See Remarks for further details

Key: p bulk density, linear WL Liquid limit WP Plastic limit <425 μ m preparation ps particle density pd dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

w moisture content b 1 point cone test IP Plasticity Index s sieved specimen -p = small pyknometer

* test carried out to BS EN ISO 17892 h removed by hand

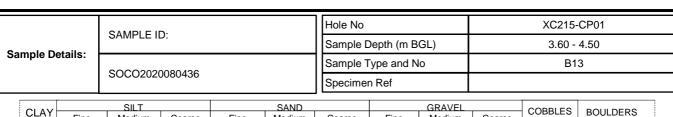
QA Ref SLR 1 Rev 2.94 Mar 17

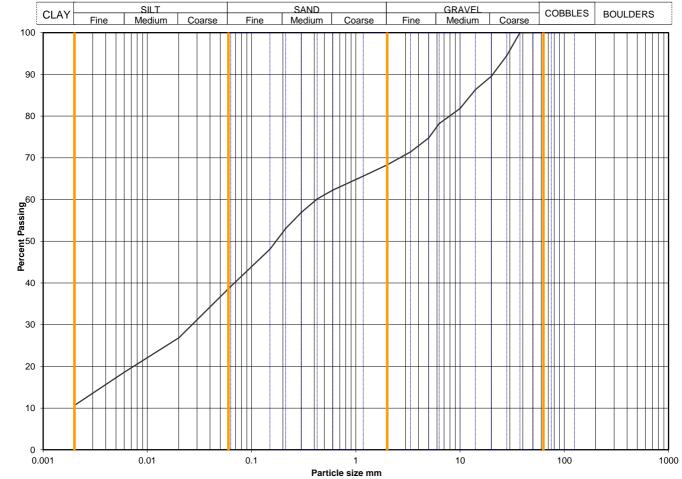

Project No N9390-20
Project Name Cork Line Level Crossings

Figure

INDX

Printed: 19/08/2020 14:28


The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited



Jul 17

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

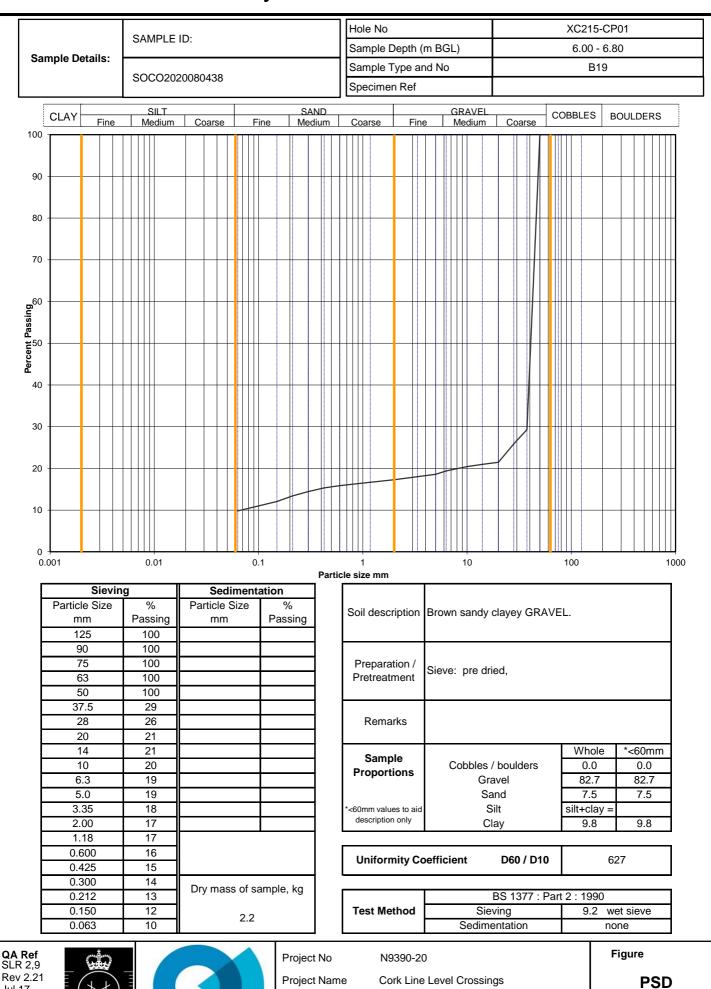
Sievin		Sedimentation				
Particle Size	%	Particle Size	%			
mm	Passing	mm	Passing			
125	100	0.0201	27			
90	100	0.0060	19			
75	100	0.0020	11			
63	100					
50	100					
37.5	100					
28	95					
20	90					
14	86					
10	82					
6.3	78					
5.0	75					
3.35	71					
2.00	68					
1.18	66	Particle density	/ Ma/m3			
0.600	62	Farticle derisity	y, ivig/1113			
0.425	60	2.65 a	ssumed			
0.300	57	Dry mass of sa	ample ka			
0.212	53	Dry mass or so	ampie, ky			
0.150	48	1.8				
0.063	39	1.0				

Soil description	Brown mottled grey slightly gravelly slightly sandy silty CLAY						
Preparation / Pretreatment	Sieve: pre dried, Pipette:	as BS1377					
Remarks							
Commis		Whole	*<60mm				
Sample Proportions	Cobbles / boulders	0.0	0.0				
Proportions	Gravel	31.7	31.7				
	Sand	29.2	29.2				
*<60mm values to aid	Silt	28.5	28.5				
description only	Clay	10.6	10.6				

Uniformity Coefficient	D60 / D10	Not applicable
------------------------	-----------	----------------

	BS 1377 : Part 2 : 1990						
Test Method	Sieving 9.2 wet sieve						
	Sedimentation 9.4 piper						

QA Ref SLR 2,9 Rev 2.21 Jul 17


Project No N9390-20

Project Name Cork Line Level Crossings

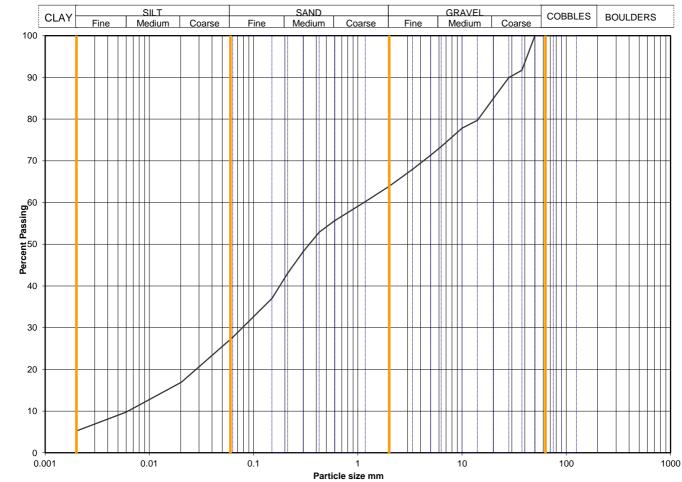
Figure

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Jul 17

Project Name Cork Line Level Crossings


The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

 Sample Details:
 Hole No
 XC215-CPRC01

 Sample Depth (m BGL)
 0.30 - 1.20

 Sample Type and No
 B2

 Specimen Ref
 Specimen Ref

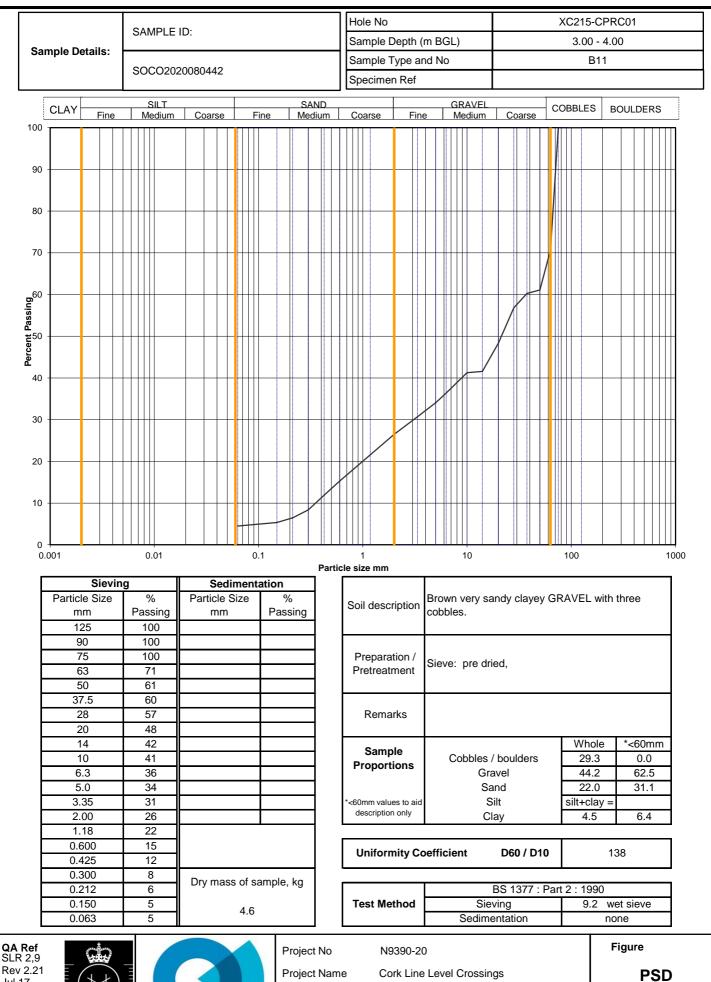
Sievin	~	Sediment	ation .
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0203	17
90	100	0.0060	10
75	100	0.0020	5
63	100		
50	100		
37.5	92		
28	90		
20	85		
14	80		
10	78		
6.3	73		
5.0	71		
3.35	68		
2.00	64		
1.18	60	Particle density	, Ma/m2
0.600	56	Particle derisity	y, ivig/iii3
0.425	53	2.65 a	ssumed
0.300	48	Dry mass of o	ample ka
0.212	43	Dry mass of sa	апріе, ку
0.150	37	2.2	
0.063	28	2.2	

Soil description	Brown sandy gravelly clayey SILT.						
Preparation / Pretreatment	Sieve: pre dried, Pipette:	as BS1377					
Remarks							
Commis		Whole	*<60mm				
Sample Proportions	Cobbles / boulders	0.0	0.0				
Froportions	Gravel	36.2	36.2				
	Sand	36.2	36.2				
*<60mm values to aid	Silt	22.4	22.4				
description only	Clay	5.2	5.2				

Uniformity Coefficient	D60 / D10	184
------------------------	-----------	-----

	BS 1377 : Part 2 : 1990	
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.4 pipette

QA Ref SLR 2,9 Rev 2.21 Jul 17

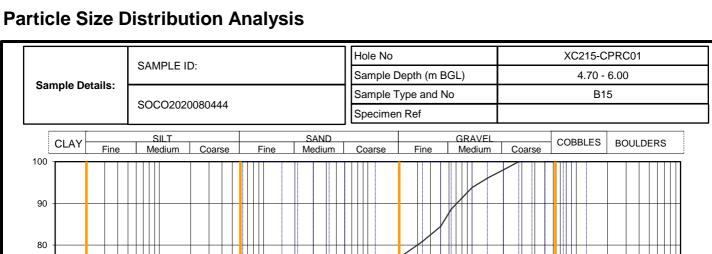

Project No N9390-20

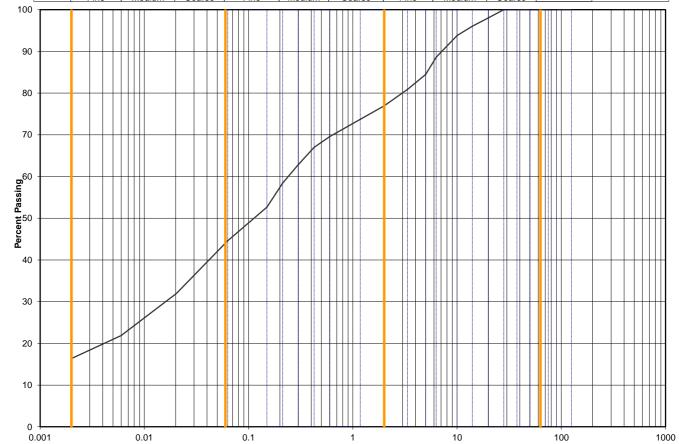
Project Name Cork Line Level Crossings

Figure

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited




Jul 17

6	
5000	

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Particle size mm

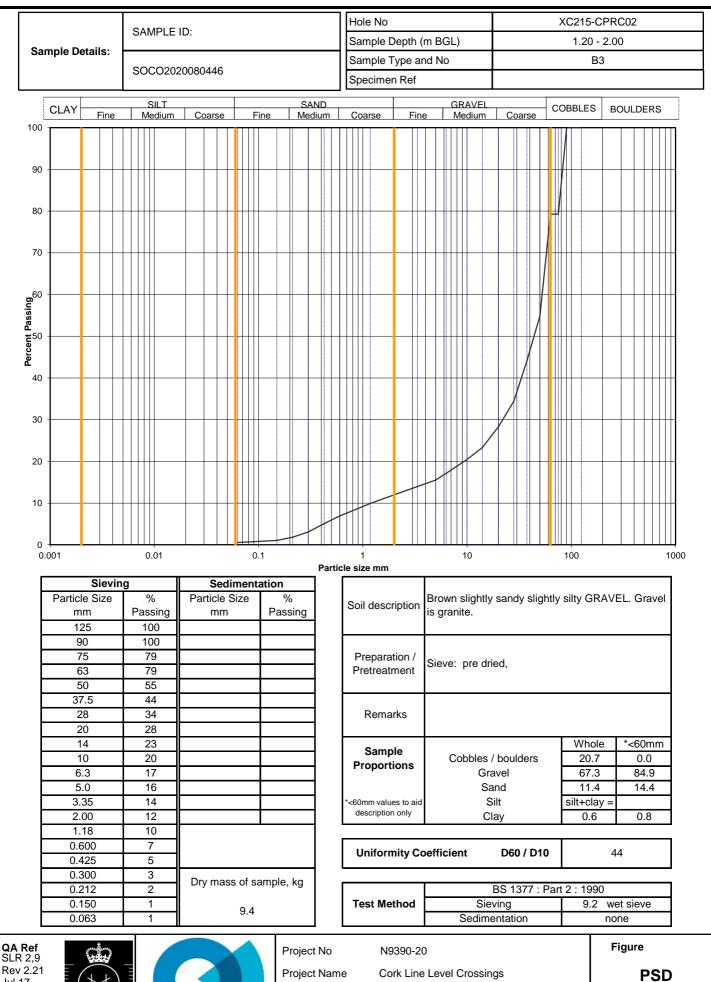
011		0 11 4	
Sievin		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0203	32
90	100	0.0060	22
75	100	0.0020	16
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	96		
10	94		
6.3	89		
5.0	84		
3.35	81		
2.00	77		
1.18	74	Particle density, Mg/m3	
0.600	70		
0.425	67	2.65 a	ssumed
0.300	63	Dr. mass of samuels live	
0.212	58	Dry mass of sample, kg	
0.150	53	1.7	
0.063	45	1.7	

Soil description	Brown slightly gravelly slightly sandy silty CLAY		
Preparation / Pretreatment	Sieve: pre dried, Pipette:	as BS1377	
Remarks			
Commis		Whole	*<60mm
Sample Proportions	Cobbles / boulders	0.0	0.0
Froportions	Gravel	23.2	23.2
	Sand	32.3	32.3
*<60mm values to aid	Silt	28.2	28.2
description only	Clay	16.3	16.3

Uniformity Coefficient	D60 / D10	Not applicable
-------------------------------	-----------	----------------

	BS 1377 : Part 2 : 1990	
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.4 pipette

QA Ref SLR 2,9 Rev 2.21 Jul 17

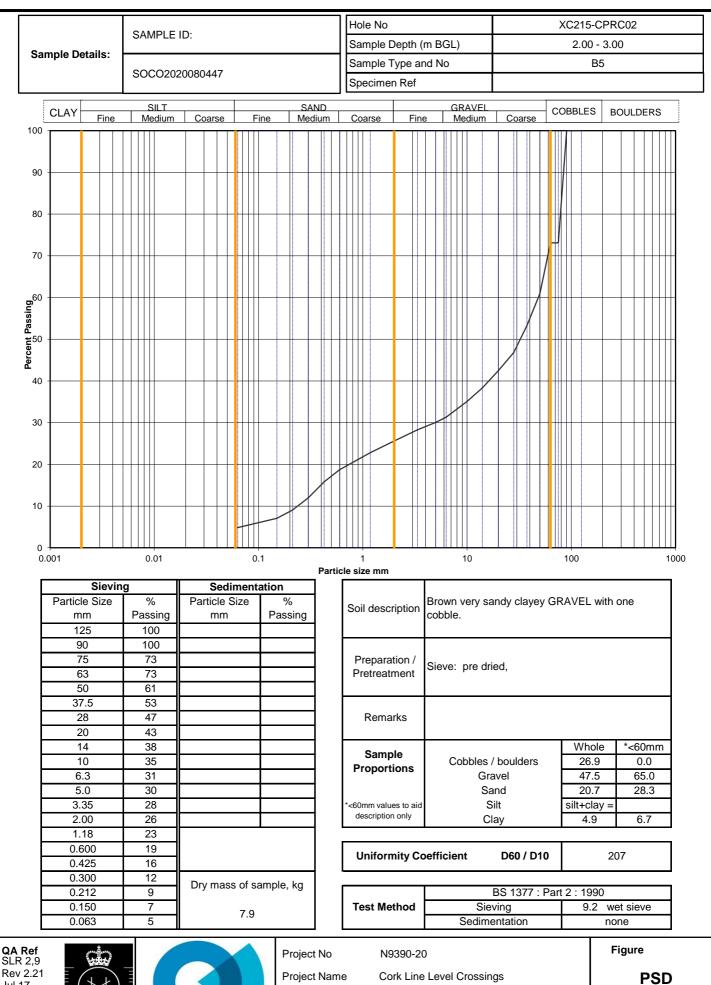


Project No N9390-20

Project Name Cork Line Level Crossings **Figure**

PSD

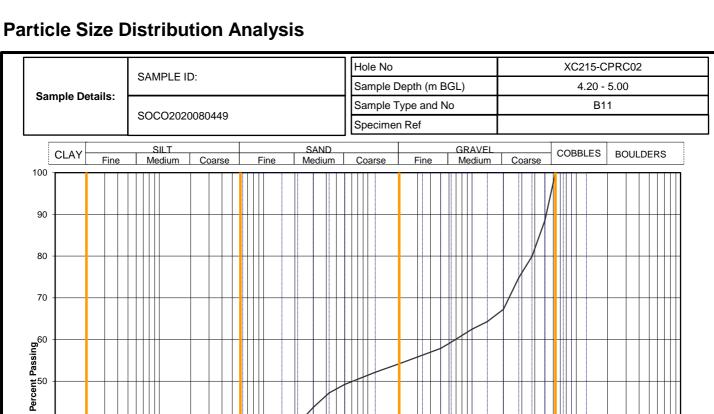
The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited



Jul 17

SO	COTEC

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited



Jul 17

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

30 20 10 0 0.01 10 0.001 0.1 100 1000 Particle size mm

Sievin	Sieving Se		edimentation	
Particle Size	%	Particle Size	%	
mm	Passing	mm	Passing	
125	100	0.0201	19	
90	100	0.0060	14	
75	100	0.0020	9	
63	100			
50	89			
37.5	80			
28	75			
20	67			
14	64			
10	62			
6.3	59			
5.0	58			
3.35	56			
2.00	54			
1.18	52	Dantiala danaiti. Maylaa		
0.600	49	Particle density, Mg/m3		
0.425	47	2.65 assumed		
0.300	44	Dry mass of sample, kg		
0.212	40	Diyillass 01 Se	ampie, ky	
0.150	36	3.0		
0.063	28	3.0		

Soil description	Brown gravelly slightly sandy silty CLAY		
Preparation / Pretreatment	Sieve: pre dried, Pipette:	as BS1377	
Remarks			
Commis		Whole	*<60mm
Sample	Cobbles / boulders	0.0	0.0
Proportions	Gravel	45.8	45.8
	Sand	25.9	25.9
*<60mm values to aid	Silt	19.5	19.5
description only	Clay	8.8	8.8

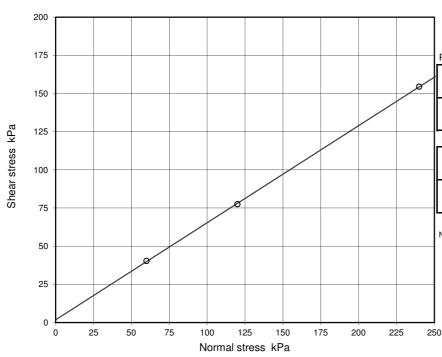
Uniformity Coefficient	D60 / D10	2432
------------------------	-----------	------

	BS 1377 : Part 2 : 1990	
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.4 pipette

QA Ref SLR 2,9 Rev 2.21 Jul 17

40

Project No N9390-20


Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Determination of shear strength by direct shear (Small shearbox apparatus) (BS1377: Part 7: clause 4: 1990) N9390-20 Sample Details: Project No Hole No. XC215-CP01 Project Name Depth (m BGL) 1.20 - 2.00 Sample No 5 Type В Cork Line Level Crossings Spec Ref Soil Description Brown SAND. Specimen(s) nominally 60mm x 60mm square Test(s) carried out in submerged condition Specimen Type -2mm material. Recompacted to 2Mg/m3 at as received moisture /Preparation Particle density, assumed Mg/m³ **Specimen Details** 4 5 6 No. 2 3 Height 25.0 25.0 25.0 **Bulk Density** Mg/m³ 2.00 2.00 2.00 5.9 5.9 Water Content 5.9 1.89 1.89 1.89 Dry density Mg/m³ 0.403 0.405 0.405 Voids ratio Degree of Saturation % 39 39 39 Consolidation / Normal Stress applied 60 120 240 kPa -0.822 Change in height during consolidation -0.324 -0.588 mm Voids ratio after consolidation 0.385 0.372 0.359 0.381 0.348 0.313 Voids ratio at end of test % 14.4 13.1 11.8 Moisture content at end of test જ Saturation at end of test % 100 100 100 Shearing stage

Data of displacement	Peak	mm/min	0.600	0.600	0.600		
Rate of displacement	Residual	mm/min					
Peak values, (o)	Relative displacement	mm	10.00	5.00	8.00		
reak values, (0)	Shear stress	kPa	40.2	77.5	154.4		
	No. of reversals						
Residual values, (x)	Relative displacement	mm					
	Shear stress	kPa					

Shear Strength Parameters

Peak strengt	h, (o)	Regression	Manual
с'	kPa	1.8	-
ø'	degrees	32½	-

Residual strength, (x)

C' _R	kPa	ı	-
Ø' _R	degrees	-	-

Notes:

1. After shear values based on BS1377. Pt 7 cl. 4.6.1.6 using δH calculated from consolidation and shear stages.

Ref

SLR7.4 Rev 86.0 Feb18

Printed:19/08/2020 14:26

Figure

SSB

sheet 1 of 2

		Dete	rminati	on of	shear (E	streng 3S137	gth by 7 : Pai	direct	shear (ause 4 :	Sma 1990	ll she	earbo	х арр	aratu	s)		
Proj	ect No	N9390-20						Sample	e Details:	Hole	e No.				XC21	5-CP01	
Proj	ect Name										th (m					- 2.00	
		Cork Line Le	evel Cros	sings							nple N	lo		5	Туре		В
										ID Sne	c Ref		+				
Co	nsolidat	ion stage(s)					<u> </u>			Орс	0 1101						
	0.00					1											_
шш	-0.20																_
ent r	-0.40				1												
ovem	-0.60				2												_
ä	-0.80				3												
Vertical movement mm	-1.00				3												
	-1.20		0 0		4			7 0		10		4.4	10	10	11	15	
	0	1	2 3	•	4	5		7 8 oot Time m		10	1	11	12	13	14	15	16
Sh	nearing s	tage(s)															
	0.00																
	-0.25									*	1						
t mm	-0.50																
men	-0.75		_														
Vertical movement mm	-1.00									•	2						
tical	-1.25																
Ver	-1.50										3						
	-1.75																
	-2.00 0	1	2	3	4	5	6	7 8	3 9	10)	11	12	13	14	15	16
	200															o peak	
																x residu	al
	180																
	160																
	160										3						
	140		ļ.,														
	120																
кРа																	
ress	100																
Shear stress kPa		/															
She	80																
											2						
	60	+															
	40 —	V =									1						
	20	<i>y</i>															
	- /																
	0 0	1	2 ;	3	4	5	6	7 8	3 9	1()	11	12	13	14	15	16
	J	-	·						acement mr				_	. =		. •	. •
Ref														Fig	ure		
SI	LR7.4																
Re	v 86.0 eb18						[() <	1	D-i-	ntodia	a/ne/a	2020 14	1.26		c	SSB	
1-	0010								"	inteu. I	3/00/2	.UZU 14	r. ∠ 0		3	JJD	
			soc	ОТІ	EC		TESTIN 000	NG								sheet	2 of 2

Certificate Number 20-15912

25-Aug-20

Client Socotec - Geotechnical Lab

Askern Road Doncaster DN6 8DG

Our Reference 20-15912

Client Reference N9390-20

Order No (not supplied)

Contract Title Cork Line Level Crossing

Description 2 Soil samples.

Date Received 21-Aug-20

Date Started 21-Aug-20

Date Completed 25-Aug-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-15912 Client Ref N9390-20 Contract Title Cork Line Level Crossing

Lab No	1715660	1715661
_	XC215-	XC215-
Sample ID	CPR02	CPR01
Depth	1.20-2.00	1.20-2.00
Other ID		
Sample Type	В	В
Sampling Date	11/08/2020	11/08/2020
Sampling Time	n/s	n/s

lest	Method	LOD	Units		
Inorganics					
рН	DETSC 2008#		рН	8.0	8.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	82	140
Sulphur as S, Total	DETSC 2320	0.01	%	0.02	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.05	0.05

Information in Support of the Analytical Results

Our Ref 20-15912 Client Ref N9390-20

Contract Cork Line Level Crossing

Containers Received & Deviating Samples

Date Inappropriate container for

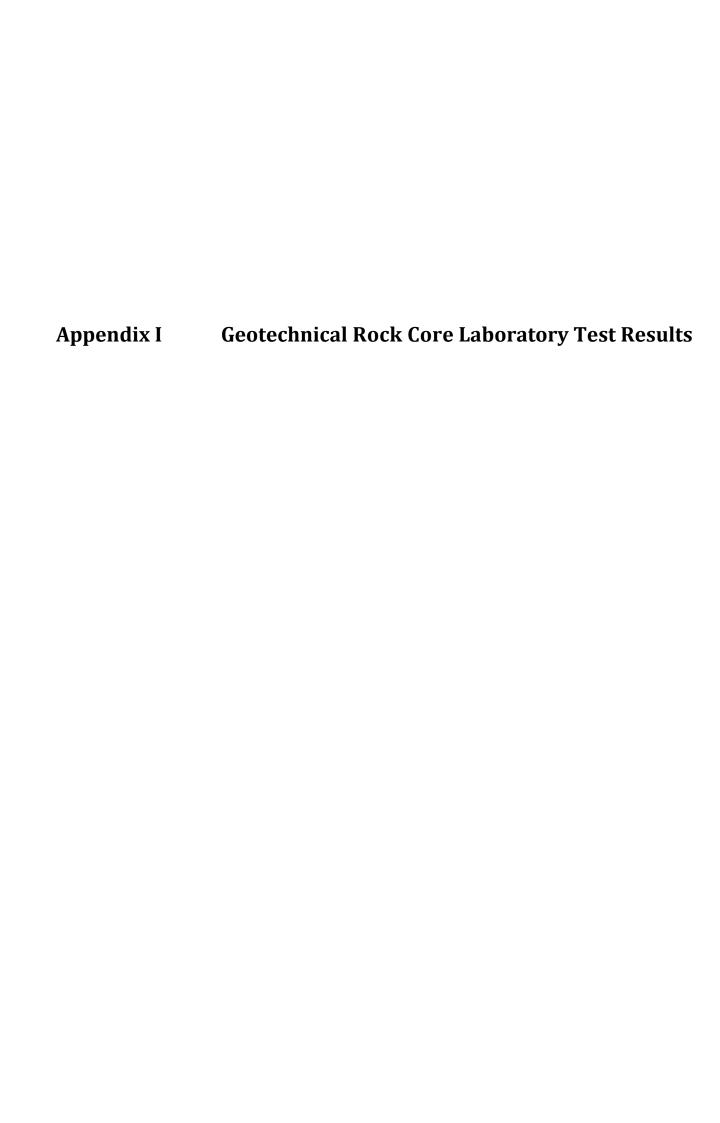
Lab No	Sample ID	Sampied	Containers Received	Holding time exceeded for tests	tests
1715660	XC215-CPR02 1.20-2.00	11/08/20	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	_
	SOIL				
1715661	XC215-CPR01 1.20-2.00	11/08/20	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
	SOIL				

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.


Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Point Load Index Test

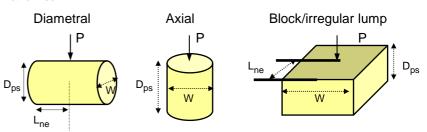
All specimens tested at as received water content unless shown otherwise

Test Type

D - Diametral, A - Axial, I - Irregular Lump, B - Block

Direction (U = unknown or random)

- L parallel to planes of weakness
- P perpendicular to planes of weakness


Dimensions

Dps - Distance between platens (platen separation)

Dps' - at failure

Lne - Length from platens to nearest free end

W - Width of shortest dimension perpendicular to load, P

Borehole	h, m	e Ref	Sample Type	en Ref	Specimen Depth	Dook time	see I	Type SRM and 8	Failure Valid (Y/N)		Dime	nsions		LOAD P	De nt diameter, mm	Point Loa MF F = (De/	Pa	Remarks
Bore	Depth, m	Sample Ref	Sample	Specimen Ref	Specime	Rock type	Type (D, A, I, B)	Direction (L, P or U)	Failure Va	Lne mm	W mm	Dps mm	Dps' mm	kN	De equivalent diameter, mm	ls	ls(50)	
XC215- CPRC01	9.60		O	1		LIMESTONE	D	L	Υ	50.0	75.5	74.0	71.0	21.68	73.19	4.05	4.80	9.91-10.03m
XC215- CPRC01	11.10		С	1		MUDSTONE	D	L	Υ	60.0	74.7	74.0	72.0	0.10	73.33	0.02	0.02	11.84-11.96m
XC215- CPRC01	11.10		С	2		MUDSTONE	Α	Р	Υ		75.7	74.0	68.0	0.10	80.95	0.02	0.02	12.38-12.45m
XC215- CPRC01	12.60		С	1		LIMESTONE	1	Р	Υ	40.0	75.1	56.0	52.0	0.10	70.50	0.02	0.02	13.12-13.20m
XC215- CPRC02	6.20		С	1		LIMESTONE	D	L	Υ	60.0	76.7	76.0	76.0	41.67	76.34	7.15	8.65	6.90-7.03m
XC215- CPRC02	6.20		O	2		LIMESTONE	D	L	Υ	50.0	64.0	62.0	61.0	0.10	62.46	0.03	0.03	7.21-7.33m

QA Ref ISRM 85 Rev 2.10 Aug 17

Project No

N9435-20

Project Name

Cork Line Level Crossings

Figure

PLT

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Sheet Printed 04/11/2020 11:34

Appendix J	Environmental Laboratory Test Results

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-15386-1

Initial Date of Issue: 24-Jun-2020

Client Environmental Laboratory Services Ltd

Client Address: Acorn Business Campus

Mahon Industrial Park

Blackrock Cork Ireland

Contact(s): Emer Kearney

Results

Project Soil Testing

Quotation No.: Date Received: 18-Jun-2020

Order No.: 7339 Date Instructed: 18-Jun-2020

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 24-Jun-2020

Date Approved: 24-Jun-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Environmental Laboratory Services Ltd			Che	mtest J	ob No.:	20-15386	20-15386
Quotation No.:		-	Chemte	st Sam	ple ID.:	1018890	1018891
Order No.: 7339				nt Samp		182115/001	182115/002
			1	2			
				SOIL	SOIL		
Determinand	Accred.	SOP					
рН	U	1010	10:1		N/A	9.9	8.8
Cyanide (Free)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Boron (Dissolved)	U	1450	10:1	μg/l	20	< 20	< 20
Barium (Dissolved)	U	1450	10:1	μg/l	5.0	< 5.0	< 5.0
Beryllium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	10:1	μg/l	0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	μg/l	1.0	1.5	< 1.0
Mercury (Dissolved)	U	1450	10:1	μg/l	0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Lead (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	μg/l	1.0	1.7	< 1.0
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C35-C44	N	1680	10:1	μg/l	50.00	[A] < 50	[A] < 50
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	10	[A] < 10	[A] < 10
Benzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Toluene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	N	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0

Results - Leachate

r rejecti con recting							
Client: Environmental Laboratory Services Ltd			Che	20-15386	20-15386		
			Chamta	ple ID.:	1010000	1010001	
Quotation No.:		'				1018891	
Order No.: 7339				nt Samp		182115/001	182115/002
			Cli	ent Sam		1	2
				Sampl	е Туре:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	LOD		
Naphthalene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluorene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Phenanthrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Chrysene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1800	10:1	μg/l	2.0	< 2.0	< 2.0

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1018890	182115/001	1			А	Amber Glass 250ml
1018890	182115/001	1			А	Plastic Tub 500g
1018891	182115/002	2			А	Amber Glass 250ml
1018891	182115/002	2			А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8–C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21–C35*, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C35*, >C35–C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix K	Pre & Post Site Condition Photographs

XC215

Pre Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

2020

XC215

Pre Works Site Photographs

Client:

larnród Éireann

Enginee

Jacob's

Date:

2020

XC215 - South Landowner

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

^{te:} 2020

XC215 - South Landowner

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

ate: 2020

XC215 - North Landowner

Post Works Site Photographs

larnród Éireann

Engineer:

Jacob's

ate: 2020

XC215 - North Landowner
Post Works Site Photographs

Client:

Iarnród Éireann

Engineer

Jacob's

Date:

2020

XC215 - North Landowner
Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

2020

XC215 - North Landowner
Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

2020

Cork Line Level Crossings – XC219 Ground Investigation

Primary Author: Ian Holley

Client: Irish Rail

Client's Representative: JACOBS

Report Date: 25th November 2020

Report No.: OCB19-135-5

File Location: OCB19-135-5/Reporting/XC219

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTHORITY											
2	SCOI	PE	1									
3	DESC	CRIPTION OF SITE	1									
4	4.2 4.3 4.4 4.5	OPERATIONS	2 3 4 5 5 5									
5	5.1	4.6.1 Geophysical Survey ORATORY WORK Geotechnical Laboratory Testing of Soils	7 7									
	5.2 5.3	Geotechnical Laboratory Testing of Rock Environmental Laboratory Testing of Soils										
6	GRO 6.1 6.2 6.3	UND CONDITIONSGeneral Geology of the AreaGround Types Encountered During Investigation of the SiteGroundwater	8 8									
7	DISC 7.1	USSIONProposed Construction										
8	REF	ERENCES										

APPENDICES

Appendix A Site and Exploratory Hole Location Plans

Appendix B Borehole Logs

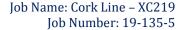
Appendix C Core Photographs

Appendix D Trial Pit Logs

Appendix E Trial Pit Photographs

Appendix F Indirect CBR Test Results

Appendix G Water Purging Data and Logs


Appendix H Geotechnical Soil Laboratory Test Results

Appendix I Geotechnical Rock Laboratory Test Results

Appendix J Environmental Laboratory Test Results

Appendix K Geophysical Survey Report

Appendix L Pre & Post Site Condition Photographs

Document Control Sheet

Report No.: OCB19-135-5

Project title: Cork Line Level Crossings – XC219

Client: Irish Rail

Client's Representative: JACOBS

Revision	Status	Report prepared by:	Report reviewed by:	Report approved by:	Issue date
001	Draft	Ian Holley	Glen Byrne	Michael O'Connell	1st October 2020
002	Final Factual	Ian Holley	Glen Byrne	Michael O'Connell	25 th November 2020

The works were conducted in accordance with:

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997: Eurocode 7 - Geotechnical Design - Parts 1 & 2 (2007)

UK Specification for Ground Investigation 2nd Edition (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- Soft to Firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- Firm to Stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

Abbreviations use	d on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample
P	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
D	Small disturbed sample
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (C)	Standard penetration test using 60-degree solid cone
x,x/x,x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
	The length achieved is stated (mm) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations rela	nting to rock core – reference Clause 44.4.4 of BS 5930: 1999
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non-Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.

Cork Line Level Crossings - XC219

1 AUTHORITY

On the instructions of Iarnród Éireann / Irish Rail, a ground investigation was undertaken at multiple locations along the Cork to Dublin railway line, between Limerick Junction and Mallow stations, to provide geotechnical and environmental information for input to the design and construction of proposed overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings

This report details the work carried out both on site at XC219 and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by OCB Geotechnical Ltd for the use of Iarnród Éireann / Irish Rail in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the JACOBS, included boreholes, trial pits, indirect CBR testing, installation of standpipes, water purging, soil and rock core sampling, in-situ and laboratory testing, a geophysical survey report and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, level crossing XC219 is located in the Creggane and Bregoge townlands, 0.9km west of Buttevant. The site is located in a rural area, surrounded by agricultural land with a number of houses and farms in the area.

The existing site is presented on the site and exploratory hole location plans in Appendix A.

4 SITE OPERATIONS

Site operations, which were conducted between 17th February 2020 and 8th September 2020, included:

- One (1) Cable Percussion Borehole
- Four (4) Rotary Boreholes
- Five (5) Cable Percussion with Rotary follow-on Boreholes
- A Standpipe Installation in five (5) Boreholes
- Four (4) Trial Pits
- Indirect CBR tests at eight (8) locations
- Water Purging in four (4) locations
- A Geophysical Survey was carried out by Minerex

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Boreholes

A total of ten boreholes were put down in a minimum diameter of 101mm through soils and rock strata to their completion depths by a combination of methods, including cable percussion boring by Pilcon rigs, and rotary drilling by a T44 rig.

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

Appendix B presents the borehole logs.

4.1.1 Cable Percussion Boreholes

One borehole (CP01) was put down to completion in minimum 200mm diameter using a Pilcon cable percussion soil boring rig. the borehole was terminated on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.1.2 Boreholes by Combined Percussion Boring and Rotary Follow-On Drilling

Five boreholes (CPRC01, CPRC02, CPRC03, CPRC04 & CPRC05) were put down by a combination of cable percussion boring and rotary follow-on open hole and coring drilling techniques. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion/obstruction.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals throughout the overburden using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930:1999 + A2: 2010, Code of practice for site investigations* (Incorporating Amendment Nos. 1 and 2).

Core logging was carried out both on and off site by the OCB Geotechnical Engineering Geologist.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.1.3 Rotary Drilled Boreholes

Four boreholes (CPRC01A, CPRC06, CPRC07 & CPRC08) were put to their completion by rotary drilling techniques only. The boreholes were completed using a T44 rig.

Symmetrix-cased full hole rotary percussive drilling techniques were employed to advance the boreholes to bedrock, after which rotary coring was employed to recover core samples of the bedrock. SPTs were carried out at standard intervals throughout the overburden, with small and bulk disturbed samples obtained where possible through the soils strata.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930:1999 + A2: 2010, Code of practice for site investigations* (Incorporating Amendment Nos. 1 and 2).

Core logging was carried out both on and off site by the OCB Geotechnical Engineering Geologist.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.2 Standpipe Installations

A groundwater monitoring standpipe was installed in boreholes CP01, CPRC01A, CPRC02, CPRC04 and CPRC05.

Details of the installations, including the diameter of the pipe and depth range of the response zone, are provided in Appendix B on the individual borehole logs.

Following the completion of the intrusive investigation work groundwater monitoring was undertaken at the site on four occasions. The results of the monitoring are presented in the report below in Section 6.3.

4.3 Trial Pits

Four trial pits (TP01–TP04) were excavated using a 15t tracked excavator fitted with a 600mm wide bucket, to depths between 1.90m and 4.30m bgl. Trial pit TP01 was terminated at 2.50m due to rapid water inflow causing pit walls to collapse. Trial pit TP02 was terminated at 4.30m due to pit walls collapsing. Trial pits TP03 and TP04 were terminated upon encountering refusal on presumed weathered bedrock at 3.00m and 1.90m respectively.

Environmental samples were taken at depths of 0.05m, 0.50m, 1.0m and 3.0m in each trial pit.

Disturbed (small tub and bulk bag) samples were taken at standard depth intervals and at change of strata.

Hand Vane testing was completed successfully where appropriate and where specified by Jacobs.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix D presents the trial pit logs with photographs of the pits and arising provided in Appendix E.

4.4 Indirect CBR Tests

An indirect CBR test was conducted at eight locations (CBR-TP01-1 to TRL08) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix F in the form of plots of the variation with depth of the cumulative blow count. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, as proposed by DTP Interim Advice Note 73/06 (Design Guidance for Road Pavement Foundations):

Log CBR = 2.48-1.057 Log (mm/blow)

The occasionally elevated CBR values could be a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

4.5 Water Purging

Prior to sampling from each standpipe (in CPRC01A, CPRC02, CPRC04 & CPRC05) water purging was carried out.

Appendix G presents the water purging data logs.

4.6 Surveying

A broad survey of the site using a handheld CAT scanner to identify any existing buried services or old foundations/obstructions to excavation was carried out before commencement of excavation works. A GPR survey to PAS 128 specification was carried out at each location prior to excavation. The GPR survey report is presented in an addendum to follow issuance of this report.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from OCB Geotechnical. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator, ITM) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

Pre-work site conditions were surveyed and upon completion of all site works at each site a post-work site condition survey was carried out. The pre and post site condition photographs are presented in Appendix L.

4.6.1 Geophysical Survey

A geophysical survey was carried out by Minerex consisting of 2D-Resistivity profiles at the proposed bridge location.

The Minerex Geophysical Survey report is presented in Appendix K.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical Laboratory Testing of Soils

Laboratory testing of soils comprised:

- **soil classification:** Moisture Content measurement, Atterberg Limit tests and Particle Size Distribution analysis.
- soil chemistry: pH, Sulphur content and water-soluble and total Sulphate content.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix H.

5.2 Geotechnical Laboratory Testing of Rock

Laboratory testing of rock sub-samples comprised:

- point load index
- unconfined compressive strength (UCS) tests

Test	Test carried out in accordance with
Point load index	ISRM Suggested Methods (1985) Suggested method for determining point-load strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60
Uniaxial compression strength tests	ISRM Suggested Methods (1981) Suggested method for determining deformability of rock materials in uniaxial compression, Part 2 and ISRM (2007) Ulusay R, Hudson JA (eds) The complete ISRM suggested methods for rock characterization, testing and monitoring, 2007

The test results are presented in Appendix I.

5.3 Environmental Laboratory Testing of Soils

In addition, environmental testing, as specified by Jacobs was conducted on selected environmental samples by Socotec at its laboratory in Burton-on-Trent, United Kingdom. Results of environmental testing are presented in Appendix J.

6 GROUND CONDITIONS

6.1 General Geology of the Area

Teagasc soil mapping indicates that the site vicinity is underlain by Glacial Till derived chiefly from Namurian rocks with an approximate south-southwest to north-northeast orientated deposit of younger Alluvium overlying the Till in the more low-lying area to the west of the railroad.

The Geological Survey of Ireland (GSI) bedrock mapping database indicates that soils in the site area are underlain at depth by the Lower Carboniferous-age Hazelwood Limestone Formation, which consists of pale to medium grey massive skeletal calcilutite and rare calcarenites which show significant internal variation, similar to the Waulsortian Limestones facies...

The Lower Carboniferous limestones form part of Middle Devonian to Namurian (Upper Carboniferous) age sedimentary sequence in Munster which was subjected to compressional deformation during the Variscan Orogeny in Late Carboniferous and Early Permian times, resulting in the formation of a west-southwest to east-northeast orientated fold-thrust belt. The site vicinity is located between a west-southwest to east-northeast orientated fault and thrust fault and is also transected by north-south orientated faults. Bedrock in this area dips in variable directions, primarily to the north and south, having undergone buckle folding and contractional thrust faulting.

The site is underlain by a regionally important Karstified (diffuse) bedrock aquifer and has a high to extreme groundwater vulnerability. Numerous Karst features, such as depressions, swallow holes, caves and springs, occur in areas underlain by limestone in north County Cork.

6.2 Ground Types Encountered During Investigation of the Site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: encountered typically in 100mm to 300mm thickness.
- Made Ground (Fill): CP01, CPRC04, CPRC05 and CPRC08 have approximately up to 1.20m of granular
- Glacial Till: sandy gravelly silty clay, frequently with cobble content, typically soft to firm in upper horizons, becoming very stiff with increasing depth.
- Fluvioglacial deposits: Typically medium dense sandy gravels.
- Bedrock (Limestone): Rockhead was encountered at levels between 2.30m and 8.30m bgl. Mostly medium strong to strong Limestone.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

It should be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Groundwater monitoring to date in standpipe installations, yielded the following results:

Date		Depth to	standing water lev	vel (m)	
Date	CP01	CPRC01A	CPRC02	CPRC04	CPRC05
13/08/20	Dry	1.13	2.21	7.15	6.29
17/08/20	Dry	0.95	2.13	7.05	6.7
21/08/20	Dry	Field Flooded (above GL)	0.64	5.22	5.07
29/09/20	Dry	0.66	1.76	6.47	6.35

Continued monitoring of the two installed standpipes will give an indication of the seasonal variation in groundwater level.

7 DISCUSSION

7.1 Proposed Construction

It is proposed to construct overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

No further details were available to OCB Geotechnical at the time of preparing this report.

8 REFERENCES

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997-1: 2007. Eurocode 7 - Geotechnical design - Part 1 General Rules. British Standards Institution, London.

BS EN 1997-2: 2007. *Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing*. British Standards Institution, London.

BS 1377: 1990. *Methods of test for soils for civil engineering purposes*. British Standards Institution, London.

BS 5930: 2015. Code of practice for ground investigations. British Standards Institution, London.

BS EN ISO 14688-1: 2002. Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution, London.

BS EN ISO 14689-1: 2003. *Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description*. British Standards Institution, London.

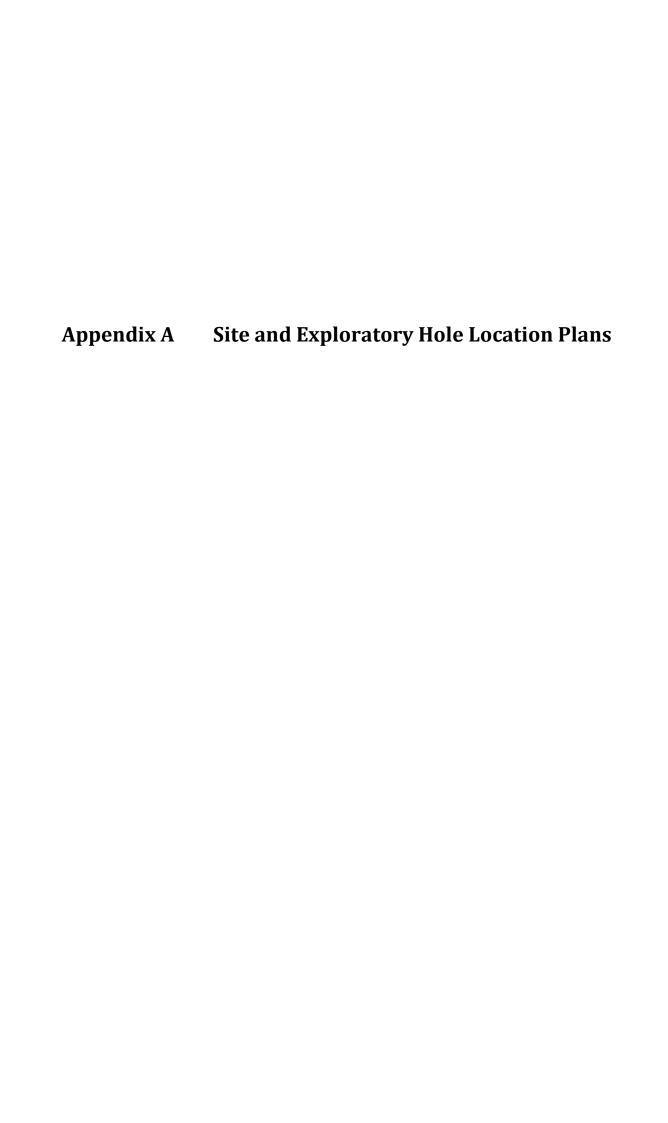
Building Research Establishment, 2005. BRE Special Digest 1, Concrete in aggressive ground.

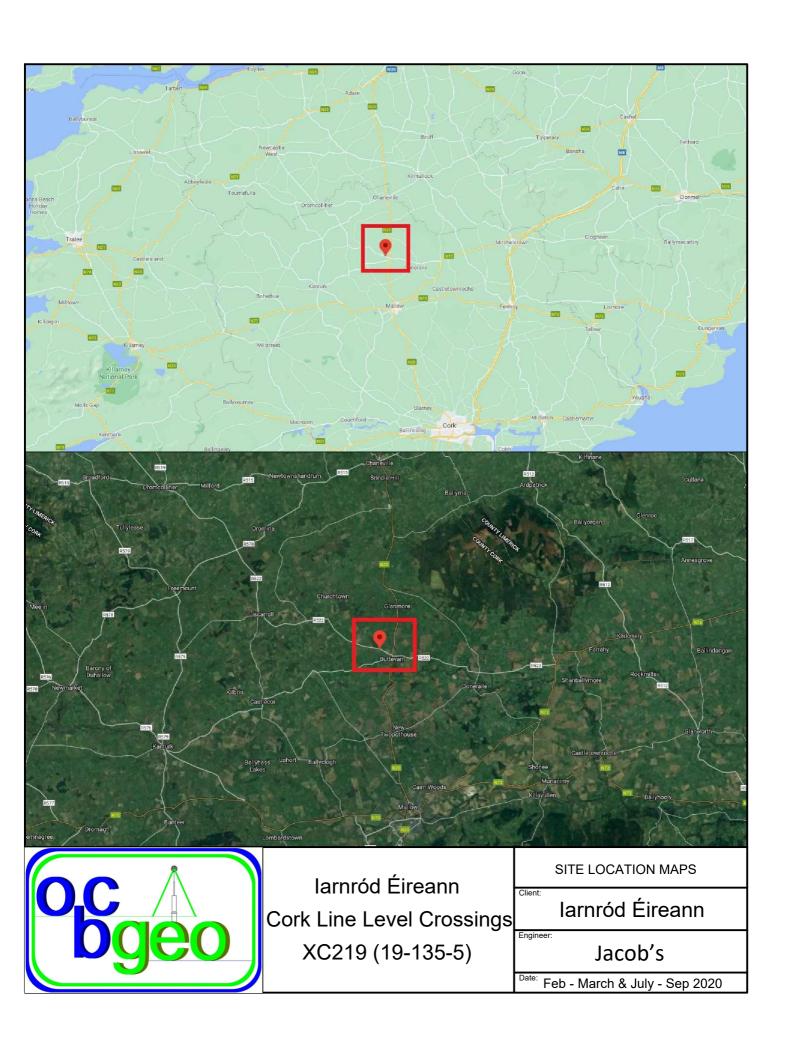
Building Research Establishment, 2007. BRE Digest 365: Soakaways.

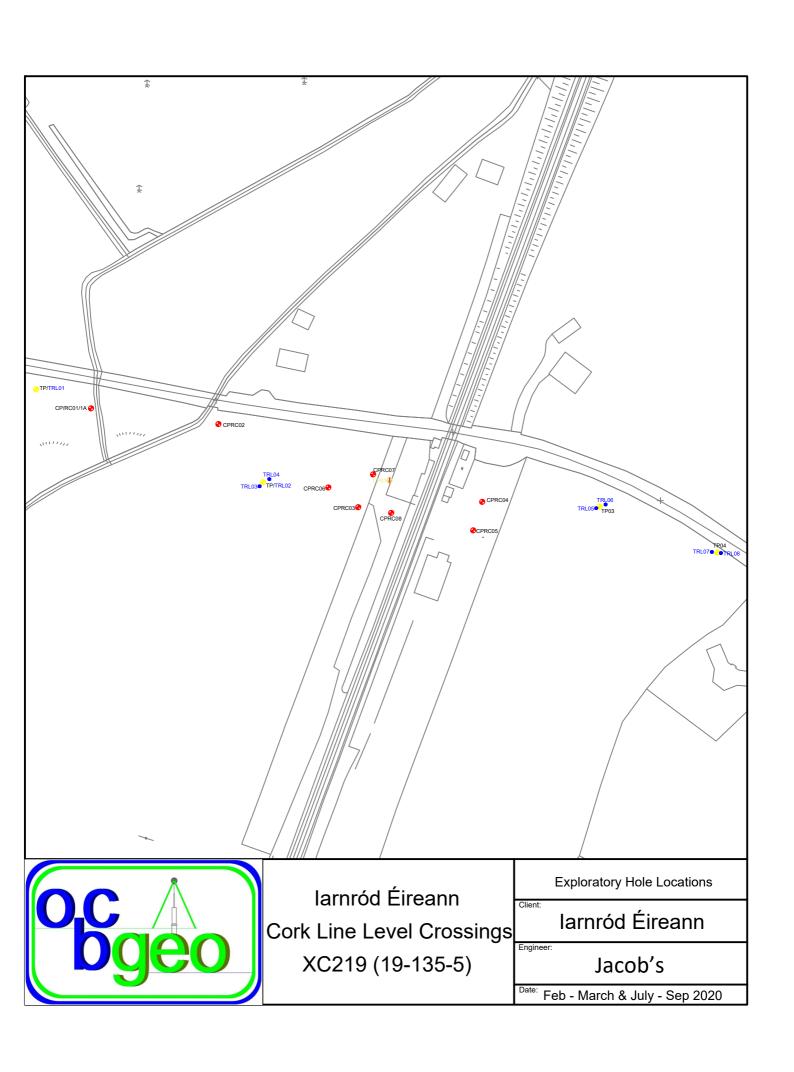
BS EN 12457-2: 2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).

Environmental Protection Agency / Draft Guidance Note on Soil Recovery Waste Acceptance Criteria. December 2017.

http://www.epa.ie/pubs/consultation/soilrecoveryconsultation/


Environmental Protection Agency / Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 1st June 2015


https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA Waste Classification 2015 Web. pdf


Environment Agency UK (2009). Soil Guideline Values (SGVs).

https://www.gov.uk/government/collections/land-contamination-technical-guidance

Soil Remediation Circular 2013, Ministry for Environment and Infrastructure, The Hague, Netherlands. https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/

					Project	No.:	Project	: Name:	IRO	renow	e No.:	
	C	\bigwedge	1		19-135		,	ne Level Crossings	1	(C219-		
	ha				Coordi		Client:					
	V y				553292			l Éireann / Irish Rail	5	Sheet 1	t of 1	
Method:					1			s Representative:	Scale: 1			
Cable Percuss	ion				609817	/.96 N	JACOBS	JACOBS				
Plant:					Ground		Dates:			iller:		
Pilcon						l mOD		26/02/2020 - 27/02/2020	4-	gger:	IH	
Depth (m)	Sample / Tests	Depth De	/ater epth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water	Backfi	ill	
(m) 0.05 0.50 0.50 0.50 - 1.00 1.00 1.20 - 1.70 1.20 - 1.65 1.70 - 2.20 1.70 - 2.20 2.00 - 2.18 2.20 - 2.45	ES1 ES2 B3 ES4 B5 D6 SPT (C) N=29 B7 D8 SPT (C) D9		N=2!	9 (4,5/5,7,8,9) 11,25/75 for	86.24 85.54 85.04 84.54 84.16	(Thickness) (0.50) (0.50) (0.70) (1.20) (0.50) (0.50) (0.50) (0.50) (0.38) (0.38) (0.38) (0.38) (0.38)		MADE GROUND: Black slightly gravelly sandy silty CLAY with low cobble content, occasional rootlets and slight organic odour (Reworked / fill material). Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded. MADE GROUND: Black slightly gravelly slightly sandy silty CLAY with some rootlets and slight organic odour. (Reworked / fill material). Sand is fine to coarse. Gravel is fine to medium, subangular. Stiff to very stiff brown with black mottling slightly sandy slightly silty gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subrounded. Cobbles are subangular to subrounded. Very stiff light brown slightly silty slightly sandy gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subrounded. Yellowish / light brown slightly gravelly silty very sandy CLAY. Sand is fine to coarse. Gravel is fine to medium, subangular. End of borehole at 2.580m			0.5 1.0 - 1.5 1.5 1.5 1.5 1.5 1.6 1.7 1.7 1.7 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	
Remarks	mus 1 2 52		F0x: /4 :					Water Added Water S From (m) To (m) Struck at (m) Casing		- Gener		
Chiselling Conti	nued: 2.58	3m - 2.5	58m (1 I	Hour)				TOTI (III) TO (III) POOCK AT (III) Casing	, (III)	(amil)		
									ollie:	Dota:!-		
								Casing Details Chise To (m) Diam (mm) From (m)	elling To (r	Details n) Tim	ne (hh:m	
								2.20 200 0.00 2.20	0.30		00:30	

					•	Project	t No.:	Projec	t Name:	Во	rehole	No.:	
).C	, ,				19-135		Cork Li	ne Level Crossings	ХC	219-CI	PRC01	
	b		e (Coordi	nates:	Client:		S	heet 1	of 2	
	,	<u>J</u>				55313	2.91 E		d Éireann / Irish Rail				
Method:						60985	6 42 N		s Representative:	Scale: 1:			
	ion+F	Kota	ry Op	oen+	-Rotary Coring			JACOBS				AA +NOB	
Plant: Pilcon+T44							d Level: 2 mOD	Dates: 22/06/2020 - 29/06/2020					
Depth	Sam	ple /	Casing Depth	Water		Level	Depth (m)			-	gger:		
(m) 0.05	Te ES1		(m)	Water Depth (m)	Field Records	(mOD) 82.52	(Thickness)	Legend	Description TOPSOIL	Water	Backfi		
0.10 - 0.50	В2					02.32	(0.40)	<u> </u>	SUBSOIL: Greyish brown slightly gravelly sandy CLAY. Gravel is fine to	1			
0.10 - 0.50 0.50	D3 ES4					82.12	0.50		coarse, angular to subrounded. Sand is fine to coarse. Soft brown slightly gravelly sandy clayey GRAVEL with low cobble content.	-		0.5 -	
0.50 - 1.20 0.50 - 1.20	B5 D6						Ė	-	Gravel is fine to coarse, angular to subrounded. Sand is fine to coarse.	▼			
0.30 - 1.20	100											1.0 —	
1.20 - 2.00	B7						(1.50)	-					
1.20 - 2.00 1.20 - 1.65	D8 SPT	(C)			N=6 (0,1/1,2,1,2)		-					1.5 -	
1.50	N=6 ES9						-	-					
2.00 - 2.40	B10					80.62	2.00	<u> </u>	Soft brownish grey silty CLAY.	_		2.0 —	
2.00 - 2.40 2.00 - 2.45	D11 SPT	(C)			N=6 (1,2/2,1,2,1)		(0.40)	<u>×_×</u> _	Soft brownish grey sirty cent.				
2.40 - 3.00	N=6 B12					80.22	2.40	***	Very Dense grey slightly silty sandy GRAVEL. Gravel is fine to coarse,			2.5	
2.40 - 3.00	D13						E		angular to subrounded. Sand is fine to coarse.				
3.00	ES14	ļ					(1.10)					3.0 -	
3.00 - 4.00 3.00 - 4.00	B15 D16						[[
3.00 - 3.45	SPT N=6				N=60 (9,10/14,18,13,15)	79.12	3.50		Medium Dense grey slightly clayey sandy GRAVEL. Gravel is fine to coarse,	$\frac{1}{2}$		3.5	
	IN-O	U			(9,10/14,18,13,13)		E		angular to subrounded. Sand is fine to coarse.				
4.00 - 5.00	B17						<u> </u>					4.0	
4.00 - 5.00 4.00 - 4.45	D18 SPT				N=29 (8,9/7,7,7,8)		Ė						
	N=2				, , , , , , ,		Ė			_		4.5	
							<u> </u>					-	
5.00 - 6.00	B19						<u> </u>	-				5.0	
5.00 - 6.00 5.00 - 5.45	D20 SPT				N=24 (5,6/6,5,7,6)		_						
	N=2	4					(4.00)					5.5	
							-					•	
6.00 - 7.00	B21						-					6.0	
6.00 - 7.00 6.00 - 6.45	D22 SPT				N=21 (4,5/4,6,6,5)		<u> </u>					-	
	N=2	1					<u> </u>	<u> </u>				6.5	
							E						
7.00 - 7.50 7.00 - 7.50	B23 D24						<u> </u>					7.0	
7.00 - 7.50 7.00 - 7.45	SPT	(C)			N=22 (5,9/5,6,6,5)		Ė					•	
	N=2	2				75.12	7.50		Possible BOULDER obstruction, rotary open hole techniques employed to	1		7.5	
							(0.50)	0,00	blast past. (Possible weathered bedrock)				
8:88 - 8:88	SPT	(C)			50 (25 for 0mm/50 50 (25 for 0mm/50 for 0mm) for 0mm)	74.62	8.00		Medium Strong to Strong, light grey LIMESTONE with some quartz veining.			8.0	
					fŏr ðmm)				 Distinctly weathered with some clay staining and infilling of discontinuities			1	
							Ē		and some orange oxide staining on discontinuity surfaces.			8.5 —	
	37	20	17						Discontinuities:				
				NI			(3.00)		-Mostly non-intact -Rough, undulating, extremely closely spaced.			9.0 —	
				INI			(3.00)		, , , , , , , , , , , , , , , , , , , ,				
9.50							<u> </u>					9.5 —	
	17	10	6				E						
	1/	10					-					10.0 —	
	TCP	SCP	RQD	FI					Continued on Next Page			4	
Remarks	ICK	JUK	יימט						Water Added Water		- General		
									2.40 4.00 0.70 2.40 2	to (m) 40	Time (min) 20 20	0.70 2.10	
									6.60 6	60	20	4.60	
									Casing Details Chis To (m) Diam (mm) From (m) 8.00 200 7.50	To (n		e (hh:mm)	
									8.00 200 7.50 11.00 101	,.50			

			8		<u> </u>	Projec	t No.:	Project	t Name:	Во	rehole I	No.:
) _C	,	\bigwedge			19-135			ne Level Crossings	XC	219-CPI	RC01
	D	Q	9			Coordi		Client:		S	heet 2 d	of 2
Method:					<u>/</u>	55313	2.91 E		d Éireann / Irish Rail s Representative :	Sca	l e: 1:	50
Cable Percuss	ion+f	Rota	ry O	pen+	Rotary Coring	60985	6.42 N	JACOBS	-	Λ.		
Plant:						Groun	d Level:	Dates:			iier:	NOB
Pilcon+T44							2 mOD		22/06/2020 - 29/06/2020	Logger: IH		
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill	
												10.5 — —
												=
11.00						71.62	11.00		End of borehole at 11.000m			11.0
												- 11.5 —
							Ē					
												12.0
							E					12.5 — —
												=
							-					13.0 —
												- 13.5 —
												_
												14.0
												=
							Ē					14.5 — —
												=
							-					15.0 — —
							E					- 15.5 —
												_
							_					16.0
							E					16.5 — —
												=
							<u> </u>					17.0
												- 17.5 —
												-
							_					18.0 —
							E					-
							<u> </u>					18.5 — -
							Ė E					-
							-					19.0 — – –
							-					- 19.5 —
							<u> </u>					-
							<u> </u>					20.0 —
							<u> </u>					
							-					20.5 — -
	TCR	SCR	RQD	FI					Water Added Water S	tribo	- General	
Remarks									From (m) To (m) Struck at (m) Casing 2.40 4.00 0.70 Casing	to (m)	Time (min) Ro	0.70
									2.40 2.4 6.60 6.6	50	20 20	2.10 4.60
									To (m) Diam (mm) From (m)	To (m		hh:mm)
									8.00 200 7.50 11.00 101	7.50	0:	1:00

Plant				A		<u> </u>	Projec	t No.:	Project	Name:	E	Borel	ıole	No.:			
Method: Solary Copen Rickary Coring Plant: Ground Level: Indicate the control of		\mathbf{C}	,			1				ne Level Crossings)	(C219)-CPI	RC01			
Method: Client's Representative: Scale: 1 Client's Representative: Client's Rep		D		9]	Coordi	nates:				She	et 1	of 2			
Modary Content Moda						<u>/</u>		Е									
Part		. D - '						N		9	Scale: 1:						
Plant: South Communication (Communication) Sou		+Rotai	ry Co	oring									Driller: NO				
Depth (m) TOR SCR Rob Tr Field Records Incol Depth (m) Depth							Groun					Logger: IH					
(m) 10 St. No. 10 No. 1			1				Level										
7.50 Open Note Some, brillers Description: (8.80) Open Note Some, brillers Description: (8.80) Open Note Some, brillers Description: (9.80) Open Note Some, br	(m)	TCR	SCR	RQD	FI	Field Records		(Thickness)	Legend			_	_				
9.80	9.50 - 9.50	55	44	21	N			7.50		Open Hole Boring, Drillers Description: Boulder CLAY Medium Strong to Strong, dark grey LIMESTONE with some quartz ve Partially weathered with occasional brown clay staining and infilling of discontinuities: -Mostly non-intact	ining.			1.0 -			
TCR SCR RQD FI	9.80					for 0mm)		- 9.80									
Water Added Water Strike - Genera	9.80							9.80	~ <u>~</u>								
From (m) To (m) Struck at (m) Casing to (m) Time (min) R 11.50 11.50 20 15.50 15.50 20		TCR	SCR	RQD	FI						Water Str	ike - G	enera				
15.50 15.50 20	Remarks									From (m) To (m) Struck at	m) Casing to	(m) Time	(min) R	lose to (ı			
														8.00 13.00			
Casing Details Chiselling Details Chiselling Details										Casing Details	Chiselli	ng Det	ails				
										To (m) Diam (mm) From (hh:mr			

<i>(</i>			A		1	Project	: No.:	Project	Name:	Вс	orehole No.:			
	C	_ /				19-135			ne Level Crossings	XC	219-CPRC01A			
	D)(Coordi	nates:	Client:	4		Sheet 2 of 2			
					<u>/</u>		E		Éireann / Irish Rail					
Method: Rotary Open	+Rotan	v (Co:	ring				NI		Representative:	Scale: 1:				
Plant:	· notal	y CUI	ı ıı ığ			Grove		JACOBS		Dı	riller: NOB			
T44						Ground	d Level: mOD	Dates:	01/07/2020 -	Lo	gger: IH			
Depth	TCR	SCR	ROD	FI	Field Records	Level	Depth (m)	Legend	Description	Water				
(m)	ICK	Jen	nqb		Tield Records	(mOD)	(Thickness)		Boulder CLAY	×	Dackiiii			
							-				-			
							-				10.5			
								~						
							-	7°/- 1			11.0			
							-				Z 11.5 —			
											-			
							-				12.0 —			
							-							
							<u> </u>				12.5			
							-	<u> </u>						
13.00 - 13.45					N=24 (6,6/6,6,6,6)		-	-0-0			13.0			
							-							
							_	1976			13.5			
							-				_			
											14.0			
							(8.70)				_			
								7-6-			14.5			
							-				-			
											15.0			
							-	791			_			
											15.5			
							-				_			
16.00 - 16.00					50 (25 for 0mm/50 for 0mm)		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			16.0			
					ior omm)		-				_			
							-				16.5			
							-				_			
							_				17.0			
							<u> </u>	- <u>-</u>						
17.50 - 17.50					50 (25 for 0mm/50 for 0mm)		-	190			17.5			
					ioi oiiiilij		<u> </u>							
							-	~ĬŢ;			18.0			
							<u> </u>							
18.50 - 18.50					50 (25 for 0mm/50 for 0mm)		18.50	~~~	End of borehole at 18.500m		18.5			
					.or oming		-							
							-				19.0 —			
							<u> </u>							
							-				19.5			
							_							
	TCR	SCR	RQD	FI										
Remarks									From (m) To (m) Struck at (m)	Casing to (m	e - General) Time (min) Rose to (m)			
									11.50 15.50	11.50 15.50	20 8.00 20 13.00			
											Details			
									To (m) Diam (mm) From (m) 18.50 151	To (m) Time (hh:mm)			

			R			Project	t No.:	Projec	t Name:	Во	reho	le N	lo.:
) ,C	,				19-135		Cork Li	ine Level Crossings	ХC	219-	CPF	C02
	D		2			Coordi	nates:	Client:		S	heet	1 c	f 2
Mathad:				_	<u>/</u>	55320	1.13 E	larnród Éireann / Irish Rail Client's Representative:				1.1	-0
Method: Cable Percuss	ion+f	Rota	rv Oı	pen+	-Rotary Coring	60984	8.01 N	JACOBS				1:5	
Plant:					, 3	Ground	d Level:	Dates:		Dr	iller:	+N	i IOB
Pilcon+T44						83.8	1 mOD		21/02/2020 - 19/03/2020	Lo	gger:	Η +Ν	1N
Depth (m)	Sam	ple / sts	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Back	fill	
(,						(TOPSOIL: Dark brown CLAY.				-
0.50	ES1					83.31	(0.50) 0.50						0.5
0.50 - 1.20	B2					05.51	0.30	×	Dark brown slightly sandy slightly silty slightly gravelly CLAY with occasional rootlets. Sand is fine to coarse. Gravel is fine to medium,	_			-
0.50 - 1.20 1.00	D3 ES4						(0.70)	×	subangular.		∷E		1.0 —
1.20 - 2.00	B5					82.61	1.20	<u> </u>	Stiff brown slightly silty slightly gravelly sandy CLAY. Sand is fine to coarse.		E		-
1.20 - 2.00 1.20 - 1.65	D6 SPT	(C)			N=25 (3,5/7,7,5,6)		(0.00)	× ×	Gravel is fine to medium, subangular to subrounded.		::E		1.5 —
	N=2	5					(0.80)	×			\vdots		-
2.00 - 3.00	B7					81.81	2.00	× 3%	Firm to stiff brown slightly silty slightly gravelly sandy CLAY with medium	1			2.0 -
2.00 - 3.00 2.00 - 2.45	D8 SPT				N=16 (3,3/3,4,4,5)		Ē		cobble content. Sand is fine to coarse. Gravel is fine to medium, subangular to subrounded.		∴E		-
	N=1	.6					(1.00)	× × ×	Social Guide Control of the Control		E		2.5
							<u> </u>	× 0 × 0					
3.00 3.00 - 3.50	ES1:	1				80.81	3.00	\$ 0 × 8	Very stiff to hard brown slightly silty slightly gravelly CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to		l: E		3.0 -
3.00 - 3.50 3.00 - 3.38	D10 SPT				N=85 (3,1/85 for		(0.90)	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	medium, subangular to subrounded. Cobbles and boulders are subangular		i E		3.5
		. ,			225mm)				to subrounded.				-
3:98 - 4:85	SPT	(C)			58 (3,8/58 for 8mm)	79.91	3.90	9,72,8	Medium Strong light to medium grey fine grained micritic LIMESTONE with				4.0 —
							Ē		frequent irregular - shaped calcite veins and pockets (up to 30mm thick). Distinctly weathered with some yellowish brown discolouration and				-
									occasional cavities along calcite veins. Discontinuities: Closely to medium spaced, undulating rough.				4.5 —
	100	93	87	8			-		biscontinuities. closely to mediam spaced, anodating rough.				
							<u>-</u>						5.0
													-
5.45							Ė						5.5 —
							<u> </u>						
	100	100	95	9									6.0 —
	100	100											6.5
7.00							(6.25)						7.0 -
													-
							<u> </u>	H					7.5
	100	93	80	6									-
							<u></u>						8.0 —
8.60							-						8.5 —
												Ţ	9.0 —
				10									-
	99	75	61	10			-						9.5 —
													-
10.15						72.00	10.15						10.0 —
10.15		00-	P.C	_		73.66	10.15		Medium Strong light to medium grey fine grained micritic LIMESTONE with		• • • • •	• •	
Remarks	ICR	SCR	KŲD	FI	[<u> </u>			- Gener		
										to (m) 10	Time (mi 20 20		e to (m 0.75 5.90
										ellinø	Details		
									To (m) Diam (mm) From (m) 3.40 200 3.20	To (n	n) Ti	01	
Cable Percussion terr	minated	at 3.40	m due	to pro	bable boulder obstruction. R	otary Open	Hole techniques	s employed	to 3.90m followed by Rotary Coring to 14.90m. 3.90 152 3.30	3.40		01	

			٨			Project		_	t Name:			e No.:			
						19-135 Coordi		Cork Li	ne Level Crossings	Sheet 2 of					
	U	y							d Éireann / Irish Rail						
Method:						55320	1.13 E	Client's Representative:				1:50			
Cable Percussi	on+l	Rota	ry O _l	pen+	Rotary Coring	60984	8.01 N	JACOBS				AA			
Plant:						Ground	d Level:	Dates:			Driller:				
Pilcon+T44			1				1 mOD		21/02/2020 - 19/03/2020	+	gger:	+MN			
Depth (m)	TCR	SCR	RQD	FI	Field Records	(mOD)	(Thickness)	Legend	-	Wate	Backf	ill			
Depth	100	90	63	fi 3	Field Records	Level	Depth (m)	Legend		Water	T				
							-					20.5			
	TCR	SCR	RQD	FI			-			-		-			
Remarks						1	<u>I</u>	l .			- Genera	1			
									6.90	10	20 20	Rose to (m 0.75 5.90			
						boulder	obstruction	. Rotary	Casing Details Chis	To (1 3.3 3.4)	ne (hh:mm) 01:00 01:00			
3.90m followed	ыу К	otary	cori	ng to	14.90111.				3.30	3.4					

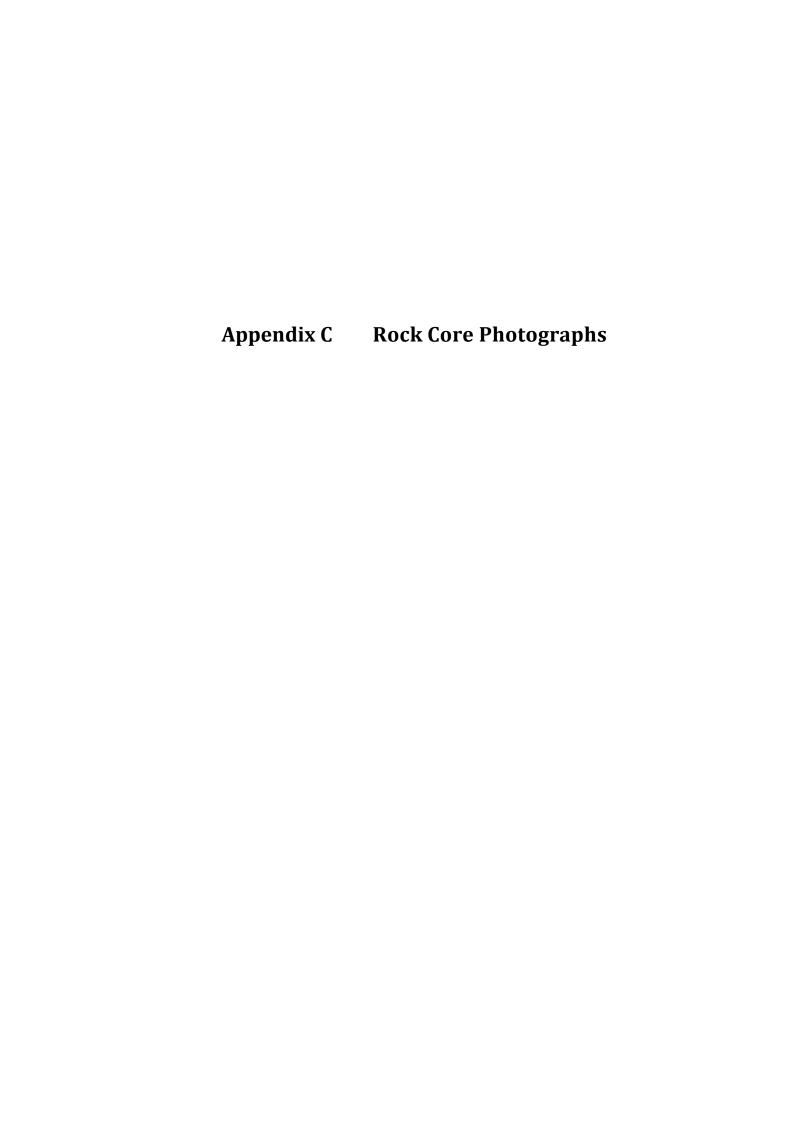
			^			Project		_	t Name:	Boreh	
	O.C	, /	<u> </u>			19-135		Cork Li	ine Level Crossings	XC219	-CPR(
	h		20)		Coordi	nates:	Client:		Shaa	t 1 of
<u> </u>		9				553270	5.00 F	larnróc	d Éireann / Irish Rail	Snee	1 1 01
Method:						33327	5.00 L	Client's	s Representative:	Scale:	1:5
	ssion+f	Rotar	v Or	en+	Rotary Coring	609803	3.38 N	JACOB!			
			, - 1			Cuarra	d Laviali			Driller	: AA
Plant: Pilcon							d Level:	Dates:		Logger	
Depth	Sam	ple /	Casing	Minter		Level	2 mOD Depth (m)		24/02/2020 - 23/03/2020		- 10111
(m)		sts	Depth (m)	Water Depth (m)	Field Records	(mOD)	(Thickness)	Legend	Description	ag Bac	kfill
0.05	ES1								TOPSOIL: Dark brown CLAY.		
							(0.50)				
0.50	ES2					85.22	0.50		Brown slightly gravelly slightly sandy silty CLAY. Sand is fine to coarse.	🔯	//// •
.50 - 1.20	B3								Gravel is fine to coarse, subrounded.		
.50 - 1.20	D4						(0.70)	×)
.00	ES5					04.53	1 100	X	> >		1
20 - 2.00 20 - 2.00	B6 D7					84.52	1.20	<u> </u>	Soft brown slightly sandy slightly silty gravelly CLAY with medium cobble		
.20 - 1.65	SPT	(C)			N=6 (1,1/1,2,1,2)		,	× × 0	content. Sand is fine to coarse. Gravel is fine to coarse, subangular to		1
	N=6						(0.80)	<u>, </u>	subrounded. Cobbles are angular to subangular.		
						00.5-		· · · · · · · · · · · · · · · · · · ·			
.00 - 2.50 .00 - 2.18	B8 SPT	(C)			75 (17,21/75 for	83.72	2.00	*** 0	Stiff brown slightly sandy slightly silty gravelly CLAY with high cobble		2
	' '	(~)			30mm)		(0.50)	\$000°	content and medium boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders are angular to		
.50 - 3.50	В9					83.22	2.50	\$ 00 B	subangular.		2
2.50 - 3.50	D10							× × 0.	Soft light brown slightly sandy slightly silty gravelly CLAY with medium		
							14.05	× × 0.	cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular		
3.00 3.00 - 3.45	ES13				N=7 (1,1/1,3,2,1)		(1.00)	× × 0	to subrounded. Cobbles are angular to subangular.		3
3.43	N=7				14-7 (1,1,1,5,2,1)			0-0			
3.50 - 4.50	B11					82.22	3.50	<u> </u>	Voru cliff to hard light brown slightly conductional control of the control of th		3
3.50 - 4.50	D12							\$000 B	Very stiff to hard light brown slightly sandy slightly silty gravelly CLAY with medium cobble content and low boulder content. Sand is fine to coarse.		
								8.0×8	Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders		
1.00 - 4.34	SPT	(C)			N=95 (10,15/95 for				are angular to subangular.		4
					185mm)			-0-20 -0-0-0 -0			
							(1.90)	~~.~ <u>~</u>			4
								800			
								×.0√2° β.			
5.00 - 5.08	SPT	(C)			50 (19 for 75mm/50			8.0×8			5
					for 0mm)						
5.40 - 5.59 5.40 - 5.59	SPT	(C)			75 (3,9/75 for 75 (3,9/75 for	80.32	5.40	~~~~	Weak to Medium Strong light yellowish grey and light brown possibly		5
				7	48mm)	70.06	(0.36)	\Box	partially dolomitized fine grained micritic LIMESTONE.		
						79.96	5.76		Distinctly to highly weathered with yellowish brown discoloration on cavity		
	80	25	25	NI					surfaces.		6
	80	25	25				(1.14)		 		
							(1.14)		Discontinuities: Very closely to closely spaced undulating rough. Weak to Medium Strong light grey fine grained micritic LIMESTONE.		6
				6					weak to Wedidin Strong light grey line grained intertite Livits Tolve.		
5.90						78.82	6.90	H	Distinctly weathered with some brown slightly sandy silty clay infilling and		
						. 5.52	- 5.50		brown discolouration on discontinuity surfaces. Occasional thin calcite veins and pockets up to 10mm wide.		7
									venis and pockets up to toilill wide.		
								ΗН	Discontinuities: Very closely to closely spaced, planar to undulating, rough.		7
	98	58	44						Weak to Medium Strong light grey fine grained micritic LIMESTONE with		' کی
								H	occasional calcite veins and pockets up to 15mm wide.		
							_		Distinctly weathered with some yellowish brown discolouration on		8
									discontinuity surfaces and along occasional stylolites.		
3.40	-			20			(3.00)		Discontinuities: Very closely to closely spaced.		8
								ΗН	1.: Subhorizontal, planar to undulating, rough.		·
									2.: Steep to subvertical, planar to undulating, rough.		
							<u>-</u>				9
	99	65	18						-		
							Ė		1		9
											9
. 00						75.00	0.00	H	-		
9.90						75.82	9.90	×	Soft yellowish brown slightly sandy slightly gravelly silty CLAY.		10
								×			
	TCR	SCR	RQD	FI				<u> </u>	Continued on Next Page		
Remarks	1.5.0				ı	I		I	Water Added Water	Strike - Gen	
emark)									From (m) To (m) Struck at (m) Casing		
									4.00	20	
									Casing Details Chis	elling Detail	s
									To (m) Diam (mm) From (m)		Time (hh
									5.10 200 2.40		01:00

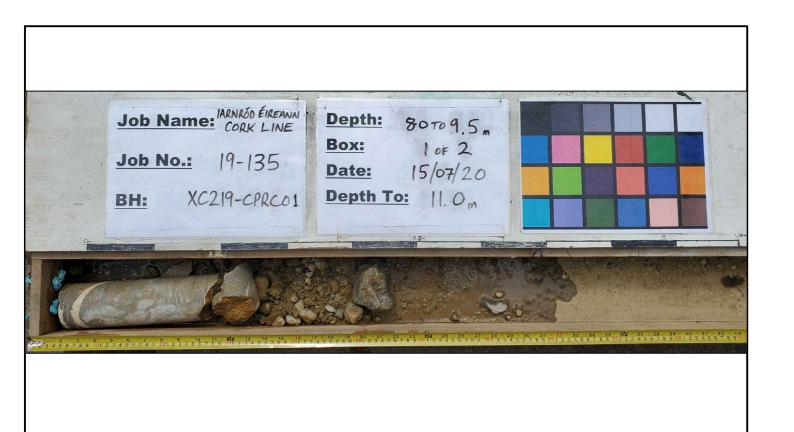
			,			Projec	t No.:	Project	Name:		Вс	rehol	e No.:
		,			1	19-135	;	Cork Li	ne Level Crossings		XC	219-0	CPRC03
	D		e (0		Coordi	nates:	Client:			9	Sheet	2 of 2
					<u>/</u>	55327	6.00 E		Éireann / Irish Rail				
Method:	ssion+l	Rota	rv O	nen+	-Rotary Coring	60980	3.38 N		Representative:		Sc	ale:	1:50
Plant:	53101111	nota	1 9 0	рспі	Trotary Corning	Groun	d Level:	JACOBS Dates:	5		Dr	iller:	AA
Pilcon							2 mOD	Dates.	24/02/2020 - 23/03/2020		Lo	gger:	MN
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level	Depth (m) (Thickness)	Legend	Description		Water	Backf	511
(m)						(mOD)	(Inickness)	×			>		10.5 -
								<u>×</u>					10.5
	67	0	0	NI			(1.40)	×					11.0 —
						74.42	11 20	×					
11.40						74.42	41:48		Medium Strong light grey fine grained LIMESTONE. End of borehole at 11.400m		1		11.5
							E						12.0 -
							Ē						12.5
							-						13.0 —
							E						
							Ē						13.5 -
													14.0
													14.0
													14.5 -
							E						
													15.0 —
							E						15.5 -
							<u> </u>						16.0 —
							Ē						16.5
							Ē						17.0
													17.5 -
							-						18.0 —
							E						
							Ė						18.5 -
							[
							<u> </u>						19.0 —
							<u> </u>						
							-						19.5 -
							Ė						
							Ē						20.0 —
							Ė						20.5 -
	TOP	805	POS	-			-						20.5
Remarks	ICR	SCR	KŲD	"	<u> </u>		[1	Water			- Genera	
									From (m) 4.00	To (m) Struck at (m) Casin 5.00 4.00 4	g to (m) .00	Time (min	2.20
									Casing	Details Chi-	elling	Details	
						boulder	obstruction	n. Rotary	Open Hole techniques employed to To (m) 5.10	Diam (mm) From (m) 200 2.40	To (r	n) Tir	me (hh:mm 01:00
5.90m followe									6.90	152 2.60	3.0)	00:40

			^			Projec			t Name:	-	_	e No.:
C						19-135 Coordi		Cork Li	ne Level Crossings	XC	219-0	CPRC0
	U	<u>y</u>		U		55334			d Éireann / Irish Rail	S	heet	1 of 1
Method:						1	6.33 N		s Representative:	Sca	ale:	1:50
	sion+F	Rota	ry O	pen-	-Rotary Coring			JACOB:		Dri	llor•	AA +NOB
Plant: Pilcon+T44							d Level: 5 mOD	Dates:	20/02/2020 - 13/03/2020	Log	gger:	
Depth	Sam		Casing Depth	Water Depth (m)	Field Records	Level	Depth (m)	Legend		Water	Backf	fill
(m) 0.00 - 1.20	B4	sts	(m)	(m)		(mOD)	(Thickness)		MADE GROUND: Granular fill material. Clause 804 angular gravel	>		- 54
0.00 - 1.20 0.05 0.50	D5 ES1 ES2					88.25	(0.20) 0.20 (1.00)		Brown slightly sandy slightly silty gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded.			0.5
1.00 1.20 - 2.00 1.20 - 2.00	ES3 B6 D7					87.25	1.20	****** *******************************	Very stiff orange brown slightly sandy slightly silty gravelly CLAY with medium cobble content and medium boulder content. Sand is fine to			1.0 -
1.20 - 1.58	SPT				N=73 (1,1/73 for 225mm)		(1.10)		coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders are subangular to subrounded.			1.5
2.00 - 2.12	SPT	(C)			50 (46 for 115mm/50 for		E	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				2.0 -
3 :38 - 2 :38	SPT	(C) 62	49	12	58 (25 for 8mm/58 for 8mm/58	86.15	2.30		Strong light grey fine grained micritic LIMESTONE with occasional irregular calcite pockets and fossil debris including crinoid ossicles. Distinctly weathered with light yellowish brown discolouration along open and incipient discontinuities. and yellowish brown clay infill of discontinuities.			2.5
3.70							(1.90)		Discontinuities are mostly closely to medium spaced. Mostly planar to undulating rough.			3.5
	100	96	96	4		84.25	4.20		Strong light grey fine grained micritic LIMESTONE with occasional irregular calcite pockets and fossil debris including crinoid ossicles.			4.0 -
5.25				2					Slightly weathered with light yellowish brown discolouration along open and incipient discontinuities and occasional to frequent irregular calcite pockets and veins. Clay infill of discontinuity at 5.30m. Discontinuities are mostly medium spaced. Mostly planar to undulating rough.			5.0 -
	99	97	97				(2.50)					5.5
6.70				3		81.75	6.70		Strong light grey fine grained micritic LIMESTONE with occasional irregular calcite pockets and fossil debris including crinoid ossicles.			6.5
	89	86	86				(1.55)		Unweathered to slightly weathered with light yellowish brown discolouration along open and incipient discontinuities and occasional to frequent irregular calcite pockets and veins. Discontinuities are mostly medium to widely spaced. Subhorizontal undulating rough.			7.0 -
8.25						80.20	8.25		End of borehole at 8.250m			8.0 -
							-					9.0 -
												9.5
												10.0 -
Remarks	TCR	SCR	RQD	FI					Water Added Water	Strike	- Genera	al
Remarks Flush lost dowr	n hole	from	n 3.80	0m.					From (m) To (m) Struck at (m) Casing	g to (m)	Time (min	
Cable Percussion teri	minated :	at 2.00)m due	e to be	drock obstruction. Rotary Op	en Hole tech	nniques employe	d to 2.30m	Casing Details Chis To (m) Diam (mm) From (m) 2.00 2.00 2.30 151 Chis Chis	To (n		me (hh:mr 01:00

Section 14 Section 14 Section 15 Sect				•			Project	No.:	Projec	t Name:	Во	reh	ole	No.:
Second Free Second Sec) _C	,]	19-135		Cork Li	ine Level Crossings	xc	219)-CF	PRC05
Method:		b	a	e (Coordi	nates:			5	hee	 et 1	of 2
Coult Procession - Rollary Open - Rollary Coning			J		_	<u>/</u>	55333	7.58 E			-	_		
Part	i	sion+l	Rota	rv Oı	nen+	-Rotary Coring	60979	1.07 N			Sc	ale:		
Price Pric		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		., 0		Tiotal y Colling	Ground	d Level:			Dr	iller	r•	na <u>-NOB</u>
Company Comp									Dutes.		Lo	gge	r: N	ΛN
20.0 20.0				Depth	Water Depth	Field Records			Legend	Description	Vater	Ba	ckfil	1
0.20 1.20 0.50	0.05	ES1		(m)	()					MADE GROUND: Granular fill material. Clause 804 angular gravel.	>		٦Ş	-
1.00	0.20 - 1.20	D5					88.12		\$\frac{\dagger}{\dagger} \frac{\dagger}{\dagger} \frac	content. Sand is fine to coarse. Gravel is fine to coarse, subangular to				0.5 -
1.00 - 2.00 D7 N-16 N-16 2.1/2.3.47 N-16 1.20 2.00 - 2.15 SPT (C) SPT (C) SO (11.18/50 fee 1.20 1							87 12		x 0 20 0					1.0
2.00 - 2.15 SPT (C)	1.20 - 2.00	D7 SPT				N=16 (2,1/2,3,4,7)	07.12		~ × × ·	cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to				1.5 -
3.90 3.90 3.90 3.90 3.90 3.90 3.90 3.90	2.00 - 2.15	SPT	(C)					(1.20)	\$ 0 X 0 X					2.0 —
3.00 93 83 8 95 95 4 95 96 4 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	3:48 - 3:48	SPT	(C)			50 (25 for 0mm/50 50 (25 for 0mm/50 for 0mm)	85.92	2.40	1				1	2.5
3.90 5.05 83.27 5.05 83.27 5.05 Strone light grey fine grained micritic LIMESTONE with occasional wavy slybibles. Slightly weathered with some lighter coloured discolouration on discontinuities are are closely to widely spaced, planar to undulating, rough. 5.00 81.72 6.60 81.72 6.60 100 97 3 100 98 86 3 100 97 3 100 98 86 3 100 97 3 100 98 86 3 100 97 3 100 98 87 100 100 97 100 100 97 100 100		100	93	83		för ömm)		- - - - -		Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Clay infill of discontinuities up to 3.40m.		٠		3.0 —
3.90 100 96 96 4 83.27 5.05 83.27 5.05 Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Discontinuity surfaces. Discontinuity surfaces. Discontinuity surfaces. Discontinuity surfaces. Discontinuity surfaces. Discontinuities are closely to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy styloities. Slightly weathered with some lighter coloured discolouration on discontinuity sur								(2.65)			•			3.5
83.27 5.05 Strong light grey fine grained micritic LIMESTONE with occasional wavy styloilles. 88.2.22 6.10 Occontinuities are closely to widely spaced, planar to undulating, rough. 88.1.72 6.60 Strong light grey fine grained micritic LIMESTONE with occasional wavy styloilles. 88.1.72 6.60 Strong light grey fine grained micritic LIMESTONE with occasional wavy styloilles. 88.1.72 Fine light grey fine grained micritic LIMESTONE with occasional wavy styloilles. 88.1.72 Occontinuities are medium to widely spaced, planar to undulating, rough. 88.1.73 Strong light grey fine grained micritic LIMESTONE with occasional wavy styloilles. 88.1.74 Strong light grey fine grained micritic LIMESTONE with occasional to some fossil device (primarily crincides) and occasional black wavy styloilles. 88.1.75 Sightly weathered with some lighter coloured discolouration on discontinuity surfaces. 88.1.75 Strong light grey fine grained micritic LIMESTONE with occasional to some fossil device (primarily crincides) and occasional black wavy styloilles. 88.1.75 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.75 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.76 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.76 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.77 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.78 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.79 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.70 Sightly weathered with occasional light yellowish brown discontinuity surfaces. 88.1.70 Sightly weathered with some lighter coloured discolouration on discontinuity surfaces. 88.1.70 Sightly weathered with some lighter coloured discolouration on discontinuity surfaces. 88.1.71 Sightly weathered with some lighter coloured discolouration on discontinuity surfac	3.90							(2.03)				·		4.0 —
8.15 Sightly weathered with some lighter coloured discolouration on discontinuities are closely to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional wavy stylolites.		100	96	96	4			-						4.5 -
Strong light grey fine grained micritic LIMESTONE with occasional wavy stylolites. Strong light grey fine grained micritic LIMESTONE with occasional wavy stylolites. Strong light grey fine grained micritic LIMESTONE with occasional wavy stylolites. Strong light grey fine grained micritic LIMESTONE with occasional to some fossil debris (primarily crionid ossiled) and occasional black wavy stylolites. Strong light grey fine grained micritic LIMESTONE with occasional to some fossil debris (primarily crionid ossiled) and occasional black wavy stylolites. Slightly weathered with occasional light yellowish brown discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional to some fossil debris (primarily crionid ossiles) and occasional black wavy stylolites. Slightly weathered with occasional light yellowish brown discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional to some fossil debris (primarily crionid ossiles) and occasional black wavy stylolites. Slightly weathered with occasional light yellowish brown discolouration on discontinuity surfaces. Discontinuities are medium to widely spaced, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional black wavy stylolites. Slightly weathered with occasional light yellowish brown discolouration on discontinuity surfaces.	5.05						83.27	5.05		stylolites.		°		5.0
81.72 (6.50) 81.72 (6.50) 100 100 97 3 81.72 (6.50) 100 100 97 3 100 97 3 100 97		99	95	95				(1.05)		discontinuity surfaces.				5.5 -
8.15 100 94 86 3								(0.50)		stylolites. Slightly weathered with some lighter coloured discolouration on				6.5
8.15 TOR SCR RQD FI Continued on Next Page Value Added Water Strike - General From (m) Tor (m) Struck at (m) Casing Details Chiselling Detail	6.60						81./2	6.60		Viscontinuities are medium to widely spaced, planar to undulating, rough. J Strong light grey fine grained micritic LIMESTONE with occasional to some				7.0 —
8.15 100 94 86 3		100	100	97	3					Slightly weathered with occasional light yellowish brown discolouration on discontinuity surfaces.				7.5 -
9.75 TCR SCR RQD FI	8.15													8.0 —
9.75 TCR SCR RQD FI		100	QΛ	86	3			(6.50)						8.5 -
TCR SCR RQD FI		100	. 54	00	3			-						9.0 —
Water Added Water Strike - General	9.75							-						10.0
From (m) To (m) Struck at (m) Casing to (m) Time (min) Ros 1.50 2.00 3.40 0 0 Casing Details Chiselling Details		TCR	SCR	RQD	FI					·	Striba	- Gor	neral	1
										From (m) To (m) Struck at (m) Casing	elling	Time (ils Time	Rose to (n 0.00

						Project	No ·	Project	: Name:	Rο	reho	le N	No.:
						19-135				l			C05
	h					Coordi		Client:					
		9			J	55333	7.58 E	larnród	l Éireann / Irish Rail		heet	2 C	л Z ——
Method:						60979	1.07 N			Sca	ıle:		
Cable Percuss	ion+ŀ	Rotai	ry O _l	pen+	Rotary Coring			JACOB:		Dri	ller:	AΑ	A NOB
Plant: Pilcon+T44							d Level: 2 mOD	Dates:		Log	ger:		
Depth	TCR	SCR	RQD	FI	Field Records	Level	Depth (m)	Legend	Description	Water	Back		
(m)	-	Jun			Tield Necolds	(mOD)	(Thickness)	Legend	Description	Š	· =	• •	10.5 —
												•	-
	100	90	90	3									11.0 —
11.30							Ē						=
11.55	100	96	96	1							··F		11.5 —
											∷`E		=
											:: =		12.0 —
	100	100	100	2			Ē				:: <u> </u>		Ξ
													12.5 —
													=
13.10						75.22	13.10		End of borehole at 13.100m			-	13.0 —
													13.5 —
													=
							-						14.0 —
													=
							Ē						14.5
													_
							_					:	15.0 —
													=
												:	15.5 —
													=
													16.0 —
													16.5
													-
							_						17.0
													=
							Ē					:	17.5
													=
													18.0 —
													=
													18.5 —
													-
													19.0 —
							Ē						19.5 —
													-
							-						20.0 —
													=
							Ē					ŀ	20.5
	TCR	SCR	RQD	FI									
Remarks									Water Added			n) Ros	se to (m)
									1.50 2.00 3.40				J.00
									To (m) Diam (mm) From (m)	lling To (m	Details	me (h	hh:mm)
Cable Percussion followed by Rot						postructio	וו. коtary (pen Hol	e techniques employed to 2.40m 2.00 2.00 2.00 2.40 151 1.50	2.00			:00


			A		\	Project	: No.:	Project	t Name:	Borehole No.
O						19-135			ne Level Crossings	XC219-CPRC0
	D	g				Coordi		Client:		Sheet 1 of 2
Method:					<u>'</u>	55325	9.99 E		d Éireann / Irish Rail s Representative:	Scale: 1:50
Rotary Open+f	Rotar	у Сс	ring			60981	4.04 N	JACOB:		
Plant:						Ground	d Level:	Dates:		Driller: NOB
T44						85.00	0 mOD		13/08/2020 - 13/08/2020	Logger: MN
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Backfill
(,						(52)	(0.30)		Hand Dug Inspection Pit to 1.2m.	
						84.70	0.30	<i>(())</i>	Driller describes: TOPSOIL Hand Dug Inspection Pit to 1.2m.	
							_		Driller describes: Sand and Gravel	0.5
							(0.90)			
						83.80	- - 1.20			1.0
						83.80	- 1.20	0 4 0 0	Rotary Open Hole Drilling: Driller describes: Sand, Gravel, Boulders	
							-	0 4 9 0		1.5
							(4.50)	0 4 9 0		
							_ (1.50) -	0 4 5 0		2.0
							-	0 4 9 D 0		
						92.20	270	0 4 0 0 0		2.5
						82.30	- 2.70 -	م معا	Rotary Open Hole Drilling: Driller describes: Boulder with Sand and Clay	
							_	م مح مح م		3.0
							(1.50)	م مح مح م		
							(1.50)	ا محد ا		3.5
							-	~ 0= 0		
						90.90	4.20	- 0-0.		4.0 -
						80.80	- 4.20 -		Rotary Open Hole Drilling: Driller describes: Clay with Sand and Gravel	
							-			4.5
							(1.10)			
							_			5.0
						79.70	5.30		Medium strong light grey and yellowish brown to brown partially	5.5
				NI			(0.85)		dolomitised micritic LIMESTONE with frequent irregular-shaped white calcite veins / pockets.	3.3
							(0.00)		Distinctly weathered with much yellowish brown discolouration locally	6.0
	100	39	11			78.85	6.15		penetrating from discontinuity surfaces and with a little sandy gravelly silty clay infilling.	0.0
							- -			6.5
c 00				12			- (0.85) -		Discontinuities: Very closely to closely spaced multiple orientations but commonly	3.3
6.80						78.00	- - - 7.00		subhorizontal and subvertical, planar to undulating, rough. Strong light grey fine grained micritic LIMESTONE with occasional thin	7.0 -
						, 5.50	- 7.00		calcite veins and frequent wavy stylolites.	7.0
	400	_	F.				-		Distinctly weathered with much yellowish brown discolouration along	7.5
	100	67	50				-	\boxplus	stylolites and some discontinuities and some brown sandy gravelly silty Clay infilling.	
				8			-		Discontinuities:	8.0 -
8.30	L						- -	Ħ	Very closely to closely spaced. commonly subhorizontal and subvertical, planar to undulating, rough.	
٥.٥٥							(2.80)	\Box		8.5
				\vdash			_	Ħ	Strong light grey fine grained micritic LIMESTONE with occasional thin calcite veins and irregular shaped pockets and occasional, locally frequent,	
	70	63	63				<u>-</u>		wavy stylolites.	9.0
	/0	03	03	3			-		Distinctly weathered with yellowish brown discolouration along stylolites and some discontinuity surfaces. Becoming less weathered with depth.	
							 - -			9.5
a 80	L					75 20	90		Discontinuities: Closely up to to medium spaced.	
9.80		00-	D 2-			75.20	9.80		1.) Subhorizontal to subangular, planer to undulating rough.	
Remarks	TCR	SCR	RQD	FI						trike - General
										to (m) Time (min) Rose to 70 20 4.70
									Casing Details Chise	elling Details
									To (m) Diam (mm) From (m) 5.30 151	To (m) Time (hh:mi
Rotary Open Ho	le Dr	illing	to 5.	3m fo	llowed by Rotary C	oring.			11.30 101	


			Å		1	Project			t Name:				- 1	rehole	
	O _I	C_				19-135			ne Level Crossings				XC	219-CP	RC06
			e	O		Coordi	nates:	Client:					5	heet 2	of 2
			7		<u>/</u>	55325	9.99 E		l Éireann / Irish Rail				-		
Method: Rotary Op	en±Po	tarv	Orin	σ		60981	4.04 N	l .	s Representative:				Sc	ale: 1:	:50
Plant:	CITTIO	tary (201111	Б ——			d Level:	JACOBS Dates:					Dr	iller: N	ОВ
Piant: T44							D mOD	Dates:	13/08/2020 - 13/08,	/2020			Lo	gger: N	1N
Depth	Ī-	CD CC	R RQI		Field Records	Level	Depth (m)	Legend	Description				Water	Backfill	\blacksquare
(m)		CR 3C	n nqı	, ,	Field Records	(mOD)	(Thickness)	Legenu	Steep to subvertical planar rough,				N _a	Dackiiii	-
							[3.) 45° - 65° planar to undulating, rough.						
							-								10.5 —
]
							-								11.0 —
]
							-		End of borehole at	11.300m					11.5 —
							<u> </u>								1 1
							_								12.0 —
							-								
							-								12.5
							-								
							[13.0 —
							-								
							[13.5
							-								
															14.0 —
							-								
							_								14.5
							-								-
							-								15.0 —
							-								15.0
							-								15.5 —
															15.5
							-								_
							-								16.0 —
							-								
							[16.5 —
							-								
							-								17.0 —
							Ė								ļ, ‡
															17.5 —
							-								100
							-								18.0 —
							-								
															18.5 —
							-								
							-								19.0 —
							-]
							<u> </u>								19.5 —
							-								=
	T	CR SC	R RQE) FI											Щ
Remarks										Water A From (m)	Added To (m)	Struck at (m) Ca 4.70	sing to (m)		ose to (m)
												4./0	4.70	20	4.70
										Casing I				Details	(hh:mm)
Rotany One	n Holo	Drillin	a to F	3m4	followed by Rotary Co	oring				To (m) [5.30 11.30	Diam (mm) 151 101	From (m)	To (r	ii) iime	(millin)
notary Ope		الالتناب	6 W 3	ا اااد.،	onowca by Notally C	ornig.									

			^			10 12F		_	t Name:	l	renoie No.:
	UL					19-135 Coordi		Client:	ne Level Crossings	XC.	219-CPRC07
	U	y]					SI	heet 1 of 2
					<u>/</u>	55328	3.99 E		d Éireann / Irish Rail		
Method: Rotary Ope	n i Pota	nu Co	orina			60982	1.03 N		·	Sca	l e: 1:50
	TITNOLA	ı y CC	gווווכ					JACOBS	5	Dri	ller: NOB
Plant: T44			1			85.66	d Level: 6 mOD	Dates:	19/08/2020 - 19/08/2020	_	ger: IH
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill
						84.46	(1.20)		Rotary Open Hole Drilling: Driller describes: Topsoil with sandy CLAY		0.5 -
							(2.50)		Rotary Open Hole Drilling: Driller describes: Slightly clayey SAND with boulders.		2.5 - 3.0 -
						81.96	3.70		Very low recovery. Medium strong, light grey, micritic LIMESTONE.		3.5 - 4.0 —
5.20	40	14	9	NI			(3.00)		Distinctly weathered (Completely destructured locally) with much brown sandy, slightly gravelly clay infill and staining and occasional yellow / orange oxide staining. Discontinuities: Completely non-intact		4.5 <i>-</i>
	7	0	0				- - - - - - - - - - - - - - - - - - -				6.0
6.70						78.96	6.70		Strong to very strong light grey micritic LIMESTONE with some thin calcite veining. Partially weathered with occasional brown clay staining and orange oxide		7.0 —
8.20	87	80	69	7		77.76	(1.20) - - - - - 7.90		staining on discontinuity surfaces. Discontinuities: 1.) Subhorizontal - 15°, undulating, rough, closely spaced. 2.) 60° - 75°, undulating, smooth, medium spaced. Medium strong to strong, light grey micritic LIMESTONE.		7.5 - 8.0 —
	93	53	40	NI			(1.30)		Distinctly weathered with some brown clay infill and staining, some orange oxide staining on discontinuity surfaces and occasional calcite veins which have ben weathered out and replaced with orange oxide. Discontinuities:		8.5 - 9.0 —
				3		76.46	9.20		Mostly subhorizontal, undulating, rough extremely closely to very closely spaced. As 6.7m - 7.9m:		
9.70						75.96	9.70		Strong to very strong light grey micritic LIMESTONE with some thin calcite		9.5 -
	TCR	SCR	RQD	FI					Continued on Next Page		
Remarks Rotary Open	Hole Dr	illing	to 3	7m f	ollowed by Rotary Cc	oring			From (m) To (m) Struck at (m) Casing to Casing Details Chisel	to (m)	Details
, open		0			,, 00						

				R		1	Project		Project			rehole	
	O.	C	. /				19-135			ne Level Crossings	XC:	219-CP	RC07
				e (Coordi	nates:	Client:		ς	heet 2	of 2
	<u> </u>	- (J'			y	55328	3.99 E	I	Éireann / Irish Rail			
Method:							1			Representative:	Sca	le: 1	:50
Rotary Op	en+Ro	otar	у Сс	ring			60982	1.U3 N	JACOBS	5	Dri	ller: N	OB
Plant:								d Level:	Dates:				
T44								6 mOD		19/08/2020 - 19/08/2020	Log	ger: ⊩	1
Depth (m)		TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill	
(111)							(IIIOD)	- (TIIICKIIESS)		veining.			
								-		Partially weathered with occasional brown clay staining and orange oxide			
								-		staining on discontinuity surfaces.			10.5
										Discontinuities:			1 3
								_		1.) Subhorizontal - 15°, undulating, rough, closely spaced.			11.0 —
								-		2.) 60° - 75°, undulating, smooth, medium spaced. End of borehole at 9.700m			_
								-		End of portation at 0.7 doi:1			
								-					11.5 —
								[1
								-					12.0
								-]
								<u> </u>					12.5
								‡					
								-					
								E					13.0 —
]
								-					13.5 —
								-					
								-					14.0 —
								-					
								-					I 7
								[14.5 —
								_					-
								-					15.0 —
								-					
								-					15.5 —
								-					-
								[16.0 —
													16.0
								-					=
								-					16.5 —
								-					
								-					17.0
								-]
								-					17.5 —
								-					
								<u> </u>					
								[18.0
								<u> </u>					3
								-					18.5 —
								‡					=
								Ė					19.0 -
								E					7
								_					19.5
								-					
								<u> </u>					
		TCR	SCR	RQD	FI					_			
Remarks										Water Added Water Si From (m) To (m) Struck at (m) Casing		- General Time (min) R	
										Casing Details Chise	lling	Details	
										To (m) Diam (mm) From (m)	To (m		(hh:mm)
Rotary Ope	n Hole	Dri	lling	to 3.	.7m f	ollowed by Rotary Co	oring.			3.70 151 9.70 101			

			A		1	Project	No.:			Во	rehole	No.:
0	C	. /				19-135		Cork Li	ne Level Crossings	ХC	219-CP	RC08
	D		20			Coordi	nates:	Client:		ς	heet 1	of 1
	,	9			<u>/</u>	55329	3.67 E	larnróc	Éireann / Irish Rail		TICCL I	01 1
Method:						60000		Client's	s Representative:	Sca	ale: 1	:50
Rotary Open+F	otar	у Со	ring			60980	J.39 N	JACOBS	S	Dri	iller: N	O.B.
Plant:						Ground	l Level:	Dates:				
T44						85.63	3 mOD		08/09/2020 - 09/09/2020		gger: ⊩	1
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level	Depth (m) (Thickness)	Legend	Description	Vater	Backfill	
(m)						(mOD)		XXXX	Rotary Open Hole Drilling:	~		
						85.43	- (0.20) - 0.20		Driller describes: TOPSOIL			
							- -		Rotary Open Hole Drilling: Driller describes: MADE GROUND, Clause 804 fill.			0.5 —
							- (1.00)					
												1.0 -
						84.43	- - 1.20					1.0
						04.43	-		Rotary Open Hole Drilling: Driller describes: Sandy GRAVEL with boulders.			
							-	0,0	Since describes, sandy divide with bounders.			1.5 —
							(1.00)	000				
							-	000				2.0 -
						83.43	2.20	0.0	Rotary Open Hole Drilling:	1		1 3
								X 0 X	Driller describes: Clayey SAND with Boulders			2.5
							-	× Ö.×				=
							-	×ŏ.×				
							-	× 8.×				3.0 —
							-	$\overset{\circ}{\overset{\circ}{\overset{\circ}{\sim}}}$				1
								0 . U				3.5
							- (3.20)					
							- (3.20)	0.00				4.0 —
							-	0.00				
							-	0°_{\times}				
							-	0.0°				4.5 —
								~ 0.×				1 3
							-	× Ö.×				5.0
							-	×ŏ.×				
				NI		80.23	- 5.40 -	7/20,00	Light grey strong LIMESTONE with occasional calcite veining.			5.5 —
				2			-		Partially to distinctly weathered with some grey sandy clay staining and			
				NI			-		infill of discontinuity surfaces, occasional orange oxide staining and some			
	93	68	68				-		localised zones of weakness.			6.0
							-		Discontinuities:			
				6			-		1.) ~45° Planar, smooth, medium spacing. 2.) Subhorizontal, planar, smooth, very closely spaced.			6.5 —
							-		- 2., Jaunionzontai, pianai, amootii, very closely spaceu.			
6.90							-					7.0 —
				1			-					
							_					7.5
	100	79	47				(4.50)					
							-					
				NI			-					8.0 —
0.40												
8.40												8.5
]
							-					9.0
	90						-					
							-	ĦН				
												9.5 —
9.90						75.73	- - 9.90					
5.30	TCR	SCR	RQD	FI		/3./3	9.30		End of borehole at 9.900m			+
Remarks											- General	nse to /
									From (m) To (m) Struck at (m) casing to 4.90 4.90 4.90		Time (min) Ro	0.00
										11:		
									To (m) Diam (mm) From (m)	lling To (n	Details n) Time	(hh:mm)
Rotary Open Ho	e Dri	lling	to 5	4m f	ollowed by Rotary Co	oring.			5.40 151 9.90 101			
		U			, ,					_		

C.P/R.C01

Rock Core Photographs

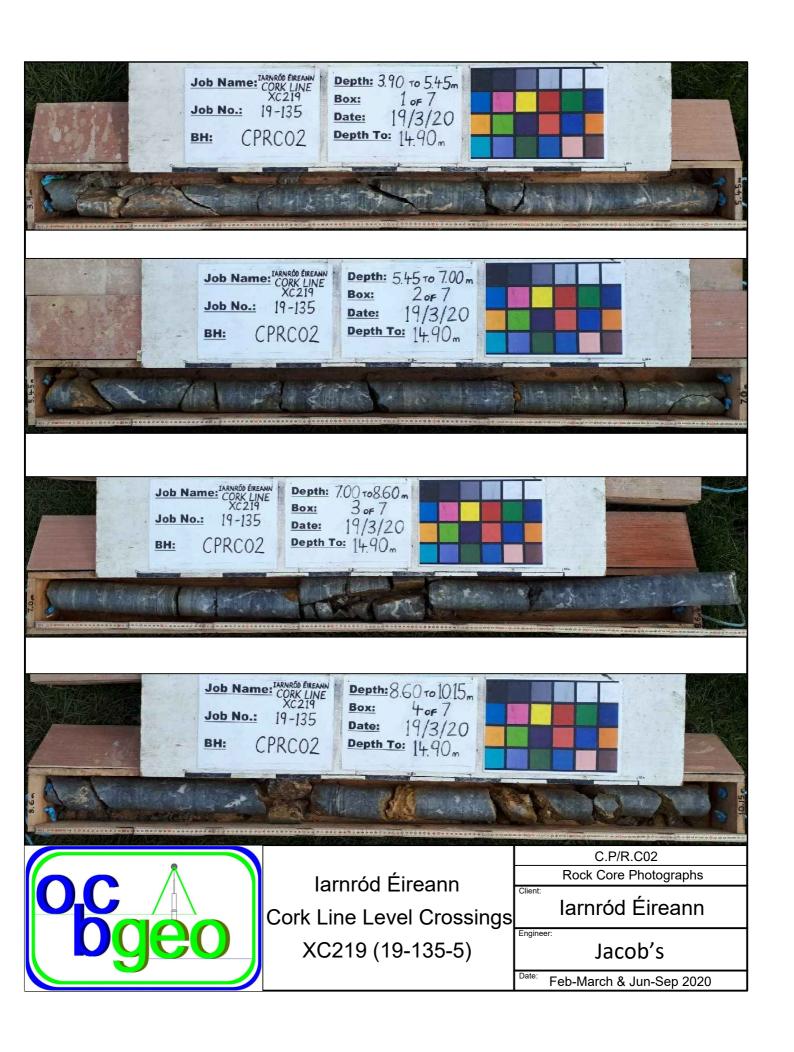
larnród Éireann

Engineer:

Jacob's

Date: Feb-March & Jun-Sep 2020

C.P/R.C01A


Rock Core Photographs

larnród Éireann

Engineer

Jacob's

Date: Feb-March & Jun-Sep 2020

C.P/R.C02

Rock Core Photographs

Client:

Iarnród Éireann

Engineer:

Jacob's

Feb-March & Jun-Sep 2020

C.P/R.C04

Rock Core Photographs

larnród Éireann

Engineer:

Client:

Jacob's

Date: Feb-March & Jun-Sep 2020

C.P/R.C03

Rock Core Photographs

larnród Éireann

Engineer:

Jacob's

Date: Feb-March & Jun-Sep 2020

